Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Bacteriology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, Non-U.S. Gov't

Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism.

B Nobelmann, J W Lengeler
B Nobelmann
Universität Osnabruck, Fachbereich Biologie/Chemie, Federal Republic of Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J W Lengeler
Universität Osnabruck, Fachbereich Biologie/Chemie, Federal Republic of Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/jb.178.23.6790-6795.1996
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

In enteric bacteria, the hexitol galactitol (Gat) (formerly dulcitol) is taken up through enzyme II (II(Gat)) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), and accumulated as galactitol 1-phosphate (Gat1P). The gat genes involved in galactitol metabolism have been isolated from the wild-type isolate Escherichia coli EC3132 and cloned on a 7.8-kbp PstI DNA fragment. They comprise six complete open reading frames and one truncated open reading frame in the order gatYZABCDR'. The genes gatABC code for the proteins GatA (150 residues) and GatB (94 residues), which correspond to the hydrophilic domains IIA(Gat) and IIB(Gat), and GatC, which represents a membrane-bound transporter domain IIC(Gat) (35 kDa, 427 residues). The three polypeptides together constitute a II(Gat) of average size (671 residues). Gene gatD codes for a Gat1P-specific NAD-dependent dehydrogenase (38 kDa, 346 residues), gatZ codes for a protein (42 kDa, 378 residues) of unknown function, and gatY (31 kDa, 286 residues) codes for a D-tagatose-1,6-bisphosphate aldolase with similarity to other known ketose-bisphosphate aldolases. The truncated gatR' gene, whose product shows similarity to the glucitol repressor GutR, closely resembles a gatR gene fragment from E. coli K-12. The gat genes map in both organisms at similar positions, in E. coli K-12, where they are transcribed counterclockwise at precisely 46.7 min or 2,173 to 2,180 kbp. The genes are expressed constitutively in both strains, probably due to a mutation(s) in gatR. Transcription initiation sites for the gatYp and the gatRp promoters were determined by primer extension analysis.

PreviousNext
Back to top
Download PDF
Citation Tools
Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism.
B Nobelmann, J W Lengeler
Journal of Bacteriology Dec 1996, 178 (23) 6790-6795; DOI: 10.1128/jb.178.23.6790-6795.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Bacteriology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism.
(Your Name) has forwarded a page to you from Journal of Bacteriology
(Your Name) thought you would be interested in this article in Journal of Bacteriology.
Share
Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism.
B Nobelmann, J W Lengeler
Journal of Bacteriology Dec 1996, 178 (23) 6790-6795; DOI: 10.1128/jb.178.23.6790-6795.1996
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jbacteriology

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2019 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0021-9193; Online ISSN: 1098-5530