Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Bacteriology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article

RNA polymerase beta mutations have reduced sigma70 synthesis leading to a hyper-temperature-sensitive phenotype of a sigma70 mutant.

Y N Zhou, D J Jin
Y N Zhou
Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D J Jin
Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/jb.179.13.4292-4298.1997
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

This work describes a mutational analysis of the interaction between the beta and sigma subunits of Escherichia coli RNA polymerase. The rpoD800 mutant has a temperature-sensitive growth phenotype because the mutant sigma70 polypeptide is not stable at a high temperature. Some rpoB mutations, including rpoB114, enhanced the temperature sensitivity of the rpoD800 mutant. We determined the mechanism by which the rpoB114 rpoD800 double mutant becomes hyper-temperature sensitive for growth. We found that the levels of the mutant sigma70 in the rpoB114 rpoD800 mutant were dramatically reduced compared to that in the rpoD800 mutant after temperature shift-up. The rate of synthesis of the sigma70 polypeptide was reduced in the rpoB114 rpoD800 double mutant compared to the rpoD800 mutant, whereas the half-life of the mutant sigma70 polypeptide after temperature shift-up was the same in both strains. We conclude that because of the reduction of expression of rpoD800 by rpoB114, in concert with the intrinsic instability of the mutant sigma70 polypeptide, the amount of holoenzyme containing sigma70 becomes limiting upon temperature shift-up. This results in the hyper-temperature sensitivity of the rpoB114 rpoD800 double mutant. Furthermore, the effect of rpoB114 on the expression of sigma70 is independent of the rpoD800 allele and is at the transcriptional level. In vitro transcription assays showed that the mutant RNA polymerase RpoB114 was defective in transcribing the two major promoters of the rpoD operon specifically. The effects of these rpoB mutations on gene expression are discussed.

PreviousNext
Back to top
Download PDF
Citation Tools
RNA polymerase beta mutations have reduced sigma70 synthesis leading to a hyper-temperature-sensitive phenotype of a sigma70 mutant.
Y N Zhou, D J Jin
Journal of Bacteriology Jul 1997, 179 (13) 4292-4298; DOI: 10.1128/jb.179.13.4292-4298.1997

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Bacteriology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
RNA polymerase beta mutations have reduced sigma70 synthesis leading to a hyper-temperature-sensitive phenotype of a sigma70 mutant.
(Your Name) has forwarded a page to you from Journal of Bacteriology
(Your Name) thought you would be interested in this article in Journal of Bacteriology.
Share
RNA polymerase beta mutations have reduced sigma70 synthesis leading to a hyper-temperature-sensitive phenotype of a sigma70 mutant.
Y N Zhou, D J Jin
Journal of Bacteriology Jul 1997, 179 (13) 4292-4298; DOI: 10.1128/jb.179.13.4292-4298.1997
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jbacteriology

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2019 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0021-9193; Online ISSN: 1098-5530