Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Bacteriology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, Non-U.S. Gov't

Alternative transcription factor sigmaSB of Staphylococcus aureus: characterization and role in transcription of the global regulatory locus sar.

R Deora, T Tseng, T K Misra
R Deora
Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60612, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Tseng
Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60612, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T K Misra
Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60612, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/jb.179.20.6355-6359.1997
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

A homolog of the multiple-stress-responsive transcription factor sigmaB of Bacillus subtilis was predicted from the DNA sequence analysis of a region of the Staphylococcus aureus chromosome. A hybrid between the coding sequence of the first 11 amino acids of the gene 10 leader peptide of phage T7 (T7.Tag) and the putative sigB gene of S. aureus was constructed and cloned into Escherichia coli BL21(DE3)pLysS for overexpression from a T7 promoter. A homogeneous preparation of the overproduced protein was obtained by affinity chromatography with a T7.Tag monoclonal antibody coupled to agarose. The amino-terminal amino acid sequence of the first 22 residues of the purified protein matched that deduced from the nucleotide sequence. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified protein, designated sigmaSB, indicated that it migrated as an approximately 39-kDa polypeptide. Promoter-specific transcription from the B. subtilis sigmaB-dependent PB promoter of the sigB operon was stimulated by sigmaSB in a concentration-dependent fashion when reconstituted with the S. aureus core RNA polymerase (RNAP). Specific transcript from the predicted sigmaB-dependent PB promoter of the sigB operon of S. aureus was obtained by the reconstituted RNAP in a runoff transcription reaction. The sar operon of S. aureus contains three promoter elements (P1, P2, and P3) and is known to partly control the synthesis of a number of extracellular toxins and several cell wall proteins. Our in vitro studies revealed that transcription from the P1 promoter is dependent on the primary sigma factor sigmaSA, while that of the P3 promoter is dependent on sigmaSB. As determined by primer extension studies, the 5' end of the sigmaSB-initiated mRNA synthesized in vitro from the sar P3 promoter is in agreement with the 5' end of the cellular RNA.

PreviousNext
Back to top
Download PDF
Citation Tools
Alternative transcription factor sigmaSB of Staphylococcus aureus: characterization and role in transcription of the global regulatory locus sar.
R Deora, T Tseng, T K Misra
Journal of Bacteriology Oct 1997, 179 (20) 6355-6359; DOI: 10.1128/jb.179.20.6355-6359.1997

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Bacteriology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Alternative transcription factor sigmaSB of Staphylococcus aureus: characterization and role in transcription of the global regulatory locus sar.
(Your Name) has forwarded a page to you from Journal of Bacteriology
(Your Name) thought you would be interested in this article in Journal of Bacteriology.
Share
Alternative transcription factor sigmaSB of Staphylococcus aureus: characterization and role in transcription of the global regulatory locus sar.
R Deora, T Tseng, T K Misra
Journal of Bacteriology Oct 1997, 179 (20) 6355-6359; DOI: 10.1128/jb.179.20.6355-6359.1997
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jbacteriology

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2019 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0021-9193; Online ISSN: 1098-5530