Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Bacteriology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
PHYSIOLOGY AND METABOLISM

Membrane-Associated Maturation of the Heterotetrameric Nitrate Reductase of Thermus thermophilus

Olga Zafra, Felipe Cava, Francis Blasco, Axel Magalon, Jose Berenguer
Olga Zafra
1Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Felipe Cava
1Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Francis Blasco
2Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et Microbiologie, CNRS 31, Chemin J. Aiguier, 13402 Marseille, cedex 09, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Axel Magalon
2Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et Microbiologie, CNRS 31, Chemin J. Aiguier, 13402 Marseille, cedex 09, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jose Berenguer
1Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jberenguer@cbm.uam.es
DOI: 10.1128/JB.187.12.3990-3996.2005
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • FIG. 1.
    • Open in new tab
    • Download powerpoint
    FIG. 1.

    The nar::kat mutants. A) Scheme showing the structure of the nar operon, the approximate location of the inserted kat gene inside narC, narI, and narJ, and the narp promoter location (curved arrow). B) Proposed topology for the NarI and NarC proteins. Amino acid positions that define the five membrane-spanning helices (I to V) in NarI and NarC are labeled. Conserved histidines involved in heme B coordination are indicated on helices II and V. The white arrow indicates the position where the NarI protein is interrupted in the narI::kat mutant. Diamonds indicate the presence of heme C groups in NarC. The cytoplasmic (in) and periplasmic (out) faces of the membrane are indicated.

  • FIG. 2.
    • Open in new tab
    • Download powerpoint
    FIG. 2.

    Phenotype of nar::kat mutants. A) Western blot for detecting NarG in soluble (S) and particulate (P) fractions of nitrate/anoxia-induced cultures of the wild-type strain (Wt) and its three nar::kat derivatives (narC, narJ, narI). B) The presence of NarG is analyzed in the soluble (S) and particulate (P) fractions from a narC::kat mutant (narC) and from a derived strain complemented with a wild-type narC gene (narC/pIWnarC) by transformation with plasmid pIWnarC. The enzyme activities (nmol of nitrite/min and OD550 unit) from each fraction are indicated.

  • FIG. 3.
    • Open in new tab
    • Download powerpoint
    FIG. 3.

    Two-hybrid assays. Bacterial two-hybrid assays were developed, and the mean values of the β-galactosidase activity corresponding to six samples in two independent experiments were represented. The whole coding regions of narI (I), narG (G), narH (H), and narJ(J) and deletion derivatives of narC coding for a signal peptide-defective protein (ΔPs) or for its cytoplasmic C-terminal (Cd) domain were cloned into plasmid pT18 and/or pT25 to generate the appropriate X-T18 and T25-X protein fusions, as indicated. Pairs of pT18 and pT25 derivatives were assayed for β-galactosidase expression in E. coli BTH101 cells. Controls for negative (Z) and positive (Gdh/Gdh) interactions were used.

  • FIG. 4.
    • Open in new tab
    • Download powerpoint
    FIG. 4.

    Sensitivity of NarG to trypsin in narI, narC, and narJ mutants. The sensitivities to trypsin of NarG and NarJ from the soluble fraction of the wild-type strain (Wtc) and its three nar::kat derivatives were compared. The sensitivity of NarG was also assayed in membrane fractions of the wild type (Wtm). The samples were incubated with the protease for the indicated times (min).

  • FIG. 5.
    • Open in new tab
    • Download powerpoint
    FIG. 5.

    Model for the synthesis of nitrate reductase in T. thermophilus. A membrane NarCI and a soluble NarGHJ complex are initially formed. In the soluble complex, the NarG protein is inactive (squares). After attachment to the membrane, an inactive pentameric apo-nitrate reductase is formed. The enzyme is subsequently activated through the insertion of the Mo-bis-MGD cofactor (MGD) and the concomitant exit of the NarJ chaperone to render an active, heterotetrameric enzyme (circled NarG). Eventually, the active NarGH complex irreversibly separates from the membrane, giving rise to soluble forms that are active in nitrate reduction with artificial electron donors but not functional in nitrate respiration.

Tables

  • Figures
  • TABLE 1.

    Strains and plasmids used

    Strain or plasmidDescription or useReference or source
    E. coli DH5α supE44 ΔlacU169 (Φ80 lacZΔM15) hsdR17 recA endA1 gyrA96 thi-1 relA1 10
    E. coli BTH101F′ cya-99 araD139 galE15 galK16 rpsL1(Strr) hsdR2 mcrA1 mcrB1 12
    T. thermophilus HB8Wild-type strain 19; ATCC 27634
    T. thermophilus HB8narCHB8 narC::kat 29
    T. thermophilus HB8narIHB8 narI::katThis work
    T. thermophilus HB8narJHB8 narJ::katThis work
    T. thermophilus HB27nar T. thermophilus HB27::nar 21
    T. thermophilus L T. thermophilus HB27::nar ΔleuBThis work
    T. thermophilus LnarC T. thermophilus HB27::nar ΔleuB narC::katThis work
    pUC118/119 E. coli cloning plasmids; Ampr 28
    pUP3BpUC119 derivative; clone carrying the whole nrc operon; Ampr 7
    pKT1 E. coli plasmid carrying the kanamycin thermostable resistance gene (kat); Ampr, Kanr 15
    pTH3ΔEcoRVPlasmid for the isolation of ΔleuB mutants 26
    pIWSuicidal vector; selection for leucine prototrophy 26
    pIWnarCInsertion of the wild-type narC gene into the leuB locusThis work
    pT18pUC19 derivative expressing T18 fragment of CyaA; Ampr 12
    pT25pACYC184 derivative expressing T25 fragment of Cya, Cmr 12
    pT18zippT18, leucine zipper fused to T18 fragment 12
    pT25zippT25, leucine zipper fused to T25 fragment 12
    pT25gdhpT25 derivative, T25-Gdh fusion protein, Cmr 7
    pT18gdhpT18 derivative, Gdh-T18 fusion protein, Ampr 7
    pT25narJpT25 derivative, T25-NarJ fusion protein, Cmr 7
    pT18narJpT18 derivative, NarJ-T18 fusion protein, Ampr 7
    pT25narGpT25 derivative, T25-NarG fusion protein, Cmr 7
    pT18narGpT18 derivative, NarG-T18 fusion protein, Ampr 7
    pT25narHpT25 derivative, T25-NarH fusion protein, CmrThis work
    pT18narIpT18 derivative, NarI-T18 fusion protein, AmprThis work
    pT25narC-ΔPspT25 derivative T25-NarCΔPs fusion protein, CmrThis work
    pT18narC-ΔPspT18 derivative, NarCΔPs-T18 fusion protein, AmprThis work
    pT25narC-CdpT25 derivative, T25-NarCCd fusion protein, CmrThis work
    pT18narC-CdpT18 derivative, NarCCd-T18 fusion protein, AmprThis work
  • TABLE 2.

    Oligonucleotides used

    NameSequencePurpose
    H15′-CTGGGTACCTCAGGACGGGAAGGCCCTCTACGG-3′pT18narC-ΔSP
    H25′-ATTCGATATCCTCCTAAGCTGGGCGCGGATC-3′pT18narC-ΔSP/Cd
    H45′-CTGGGTACCTGTCCTCTGGCAGCTTCGGCCGAG-3′pT18narC-Cd
    H75′-AAAACTGCAGGGATGAAGGTTAGAGCCCACATGTCC-3′pT25narH
    H85′-TTTAGGTACCTCGCCCCGCAAGGGGGGCTGGATG-3′pT25narH
    H175′-AAAACTGCAGGGCAGGACGGGAAGGCCCTCTACGG-3′pT25narC-ΔSP
    H185′-ATTCGATATCCCTCCTAAGCTGGGCGCGGATC-3′pT25narC-ΔSP/Cd
    H205′-AAAACTGCAGGGGTCCTCTGGCAGCTTCGGCCGAG-3′pT25narC-Cd
    H245′-ACGCGTCGACGATGAAGGTTAGAGCCCACAT-3′pT18narH
    H255′-ATTCGATATCTCGCCCCGCAAGGGGGGCTGGA-3′pT18narH
    H265′-ACGCGTCGACGATGAAGTGGAACGCCGCGCTCTTC-3′pT18narI
    H275′-ATTCGATATCAGCTGACCTCGCCAGTTGCG-3′pT18narI
    o27-355′-CGCAGTACCAGTCGTAG-3′Presence of narC::kat
    okat25′-GAAACTTCTGGAATCGC-3′Presence of narC::kat
    okat35′-GGAACGAATATTGGATA-3′Presence of kat
    okat45′-AGAAATTCTCTAGCGAT-3′Presence of kat
PreviousNext
Back to top
Download PDF
Citation Tools
Membrane-Associated Maturation of the Heterotetrameric Nitrate Reductase of Thermus thermophilus
Olga Zafra, Felipe Cava, Francis Blasco, Axel Magalon, Jose Berenguer
Journal of Bacteriology Jun 2005, 187 (12) 3990-3996; DOI: 10.1128/JB.187.12.3990-3996.2005

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Bacteriology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Membrane-Associated Maturation of the Heterotetrameric Nitrate Reductase of Thermus thermophilus
(Your Name) has forwarded a page to you from Journal of Bacteriology
(Your Name) thought you would be interested in this article in Journal of Bacteriology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Membrane-Associated Maturation of the Heterotetrameric Nitrate Reductase of Thermus thermophilus
Olga Zafra, Felipe Cava, Francis Blasco, Axel Magalon, Jose Berenguer
Journal of Bacteriology Jun 2005, 187 (12) 3990-3996; DOI: 10.1128/JB.187.12.3990-3996.2005
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Nitrate Reductases
Thermus thermophilus

Related Articles

Cited By...

About

  • About JB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jbacteriology

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0021-9193; Online ISSN: 1098-5530