Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Bacteriology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Genomics and Proteomics

Expanded Metabolic Reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an In Silico Genome-Scale Characterization of Single- and Double-Deletion Mutants

Ines Thiele, Thuy D. Vo, Nathan D. Price, Bernhard Ø. Palsson
Ines Thiele
Department of Bioengineering, University of California, San Diego, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thuy D. Vo
Department of Bioengineering, University of California, San Diego, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nathan D. Price
Department of Bioengineering, University of California, San Diego, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bernhard Ø. Palsson
Department of Bioengineering, University of California, San Diego, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: palsson@ucsd.edu
DOI: 10.1128/JB.187.16.5818-5830.2005
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • FIG. 1.
    • Open in new tab
    • Download powerpoint
    FIG. 1.

    Distributions of genes (A) and reactions (B) over subsystems. The reactions of each subsystem in panel B are additionally subcategorized into gene-associated and non-gene-associated reactions. w/o, without.

  • FIG. 2.
    • Open in new tab
    • Download powerpoint
    FIG. 2.

    Schematic representation of biotin biosynthesis. The dotted line represents the hypothetical downstream conversion of S-adenosyl-4-methylthio-2-oxobutanoate (amob) (43). Metabolites a and b represent 2-oxobut-3-enoate and 5′-methylthioadenosine, respectively. Reaction and metabolite abbreviations used here can be found in Table S2 in the supplemental data.

  • FIG. 3.
    • Open in new tab
    • Download powerpoint
    FIG. 3.

    Results of the in silico single-deletion studies. The growth rate percentages of lethal and nonlethal deletions are shown for each medium. The reduced-growth section indicates the percentage of mutants displaying reduced growth compared to that of the wild type in the same medium. See Table 1, footnote a, for medium abbreviations.

  • FIG. 4.
    • Open in new tab
    • Download powerpoint
    FIG. 4.

    Distributions of essential genes (A) and conditionally essential genes (B) over subsystems. The number of essential or conditionally essential genes per subsystem is shown in parentheses.

  • FIG. 5.
    • Open in new tab
    • Download powerpoint
    FIG. 5.

    Variation in growth rate observed in single knockouts of nonessential genes. The percentage growth rate was calculated relative to that of the wild type under the same medium conditions. The reaction abbreviations used here can be found in Table S2 of the supplemental data at http://gcrg.ucsd.edu/organisms/hpylori.html ). See Table 1, footnote a, for medium abbreviations.

Tables

  • Figures
  • TABLE 1.

    Compositions of in silico mediaa

    ComponentMin IMin IIMin IIIMin IVRich mediuma
    Medium basisMin IMin IIMin IIIMin IV
    Amino acids l-Alanine, d-alanine, l-arginine, l-histidine, l-isoleucine, l-leucine, l-methionine, l-valine l-Asparagine, l-aspartate, l-glutamine, l-glutamate, l-serine, d-serine l-Cysteine, l-lysine, l-phenylalanine, l-proline, l-threonine, l-tryptophane, l-tyrosineGlycine, ornithine
    Carbon sources d-GlucosePyruvate, lactate, malate, fumarate, succinate, α-ketoglutarate adenosine, guanosine
    Nucleotides and/or nucleosidesAdenine, cytidine, deoxyadenosine, deoxycytidine, deoxyuridine, guanine, hypoxanthine, nicotinamide d-ribonucleotide, orotate, thymidine, uracil, uridine, xanthine
    OthersPhosphate, sulfate, iron (II), iron (III), pimelate, thiamine, water, oxygen, protonsAcrylamide, acetate, acetoacetate, acetaldehyde, acetamide, citrate ethanol, formate, d-galactose, H2, carbonic acid, sodium, ammonium, Ni2+, nitric oxide, nitrite, nitrate, protoheme, urea
    • ↵ a Min I, minimal medium; min II, minimal medium plus d-glucose; min III, minimal medium plus d-glucose plus alternative carbon sources; min IV, minimal medium plus d-glucose plus alternative carbon sources plus amino acids; rich medium, medium containing all compounds for which a transport system has been defined based on the work of Schilling et al. (39).

  • TABLE 2.

    Comparison of iCS291 and iIT341 GSM/GPR

    ParameteriCS291iIT341 GSM/GPR% Similarity
    No. of genes included29134183
    No. of gene-associated reactions27235468
    No. of other reactions11611361
    No. of total reactions38847666
    No. of metabolites (internal/external)339/64411/7470/80
    No. of exchange fluxesa11574
    S matrix (no. of reactions × no. of metabolites)a649 × 403554 × 485
    • ↵ a Influxes and effluxes for each metabolite were written as separate unidirectional reactions in iCS291 but were represented as reversible reactions in iIT341 GSM/GPR.

  • TABLE 3.

    Comparison of in silico predictions of single knockouts with experimental data

    Gene locusGene nameReaction nameExptl dataaReferenceMedium compound that induces growth phenotype switch
    Min IMin IIMin IIIMin IVRichExp
    HP0002, HP1574 ribD, ribGDB4PS−−− − − − 50
    HP0004, HP1186 cynT, icfAH2CO3D+++ + + + 5
    HP0055 putP PROt4r+++ + + + 18
    HP0067 to HP0070, HP0072 to HP0073 ureH, ureG, ureF, ureE, ureB, ureAUREA+++ + + + 41
    HP0071 ureI UREAt+++ + + + 18
    HP0075 glmM, ureCPGAMT−−− − − − 7
    HP0086 mqo MDH4−−+++ − 3 l-Asparagine, l-aspartate, l-threonine
    HP0112 fucA FCLPA+++ + + + 18
    HP0121 ppsA PPS−++ + + + 18 d-Glucose
    HP0191 to HP0193 frdB, frdA, frdCFRD5+++++ + 12, 18
    HP0197 metK, metXMETAT−−−−− + 18
    HP0212 dapE SDPDS−−− − − − 21
    HP0215 cdsA DASYN_HP−−−−− + 18
    HP0255 purA ADSS−−+ + + + 18 Adenine, adenosine
    HP0293 pabB PABB−−−−− + 18
    HP0329 nadE NADS1−−− − + + 18 Nicotinamide d-ribonucleotide
    HP0360 galE UDPG4E−−−− + + 24 l-Galactose
    HP0372 dcd DCTPD, DCTPD2+++ + + + 3
    HP0380 gdhA GLUDy+++ + + + 18
    HP0381 hemG, hemKPPPGO−−−− + + 18 (Proto-) Heme
    HP0389 sodB, sodFSPODM+++ + + + 40
    HP0476 gltX, gltX_1, gltX1GLUTRS−−−− + + 18 (Proto-) Heme
    HP0509 glcD GLYCTO1−−− − − − 3
    HP0512 glnA GLNS−−+++ − 11 l-Glutamine
    HP0588 to HP0591 oorD, oorA, oorB, oorCOOR−−− − − − 3, 16
    HP0687 feoB FE2abc−−− − + − 48 (Proto-) Heme
    HP0735 gpt GUAPRT, HXPRT, XPRT+++++ − 3
    HP0740 murF UGMDDS−−− − − − 3
    HP0802 ribA GTPCII−−− − − − 10
    HP0804 ribB DB4PS−−− − − − 10
    HP0808 acpS ACPS+++++ − 3
    HP0824-0825 trx1, trxA, trxB, trxR1TRDR−−− − − − 3
    HP0829 guaB IMPD−−+ + + + 18 Guanine, xanthine
    HP0832 speE SPMS−−−−− + 3
    HP0875 katA CAT+++ + + + 13, 18
    HP1011 pyrD DHORD3−−− − + − 6 Orotate, uracil
    HP1038 aroD, aroQDHQD−−− − − − 3
    HP1050 thrB HSK−−− + + + 18 l-Threonine
    HP1052 envA, lpxCUHGADA_HP−−−−− + 18
    HP1077 nixA NIabc+++ + + + 18
    HP1084 pyrB ASPCT−−− − + − 2 Orotate, uracil
    HP1087 ribC RBFSa, RBFSb−−− − − − 10
    HP1091 kgtP AKGt2r+++ + + + 18
    HP1099 eda EDA+++++ − 3
    HP1100 edd EDD+++++ − 3
    HP1100 edd EDD+++ + + + 49
    HP1108 to HP1111 porG, porD, porA, porBPDH2−−− − + − 3 Thymidine + acetate
    HP1108 to HP1111 porG, porD, porA, porBPDH2−−−− + + 17 Thymidine + acetate
    HP1118 ggt GTMLT+++ + + + 4, 18
    HP1180 nupC ADNt2, ADNt2, CYTDt2, DADNt2, DCYTt2, DURIt2, THMDt2, URIt2+++ + + + 18
    HP1257 pyrE ORPT−−− − + − 3 Uracil
    HP1385 fbp FBP−++++ − 3 d-Glucose
    HP1399 rocF ARGN−−− + + + 26 Ornithine, l-proline
    HP1418 murB UAPGR−−− − − − 3
    HP1491PIt2r−−−−− + 18
    HP1495 tal TALA+++ + + + 3
    HP1505 ribD APRAUR, DHPPDA−−− − − − 10
    • ↵ a Boldface indicates results of experiments that agreed with in silico predictions. Exp, in vivo study results. +, growth under the given condition; −, lethal deletion. See Table 1, footnote a, for medium abbreviations. Reaction abbreviations used here can be found in Table S2 in the supplemental data.

  • TABLE 4.

    Conditionally lethal mutantsa

    Gene locus I (reaction)Gene locus II (reaction)
    HP0067 to HP0070, HP0072 to HP0073 (UREA)HP0071 (UREAt)
    HP0121 (PPS)HP1102 (PGL); HP0154 (ENO); HP0974 (PGM); HP1345 (PGK); HP1346, HP0921 (GAPD)
    HP0572 (ADPT)HP0255 (ADSS), HP1112 (ADSL1r, ADSL2r)
    HP0577 (FTHFLi, MTHFC, MTHFD)HP0183 (GHMT2r)
    HP0646 (GALU)HP0360 (UDPG4E), HP1174 (GALt2, GLCt2)
    HP0724 (ASNt2, ASPt2r, MALt2r, SUCCt2, SUCFUMti)HP0191-93 (FRD5)
    HP0735 (GUAPRT, HXPRT, XPPT)HP0409 (GMPS2)
    HP1169 to HP1172 (GLNabc)HP0512 (GLNS)
    HP1174 (GALt2, GLCt2)HP0360 (UDPG4E), HP0646 (GALU)
    HP1179 (PPM, PPM2)HP0574 (RPI)
    HP1180 (ADNt2, CYTDt2, DADNt2, DCYTt2, DURIt2, THMDt2, URIt2)HP1108 to HP1111 (PDH2), HP1533 (TMDSf)
    HP1189 (ASAD)HP0106 (METB1r), HSERTA
    HP1227, HP1538 to HP1540 (BC10)HP0875 (CAT)
    HP1290 (NMNTP)HP0329 (NADS1), HP1355 (NNDPR), HP1356 (QULNS), ASPO2
    HP1337 (NMNAT, NNAT)HP0329 (NADS1), HP1355 (NNDPR), HP1356 (QULNS), ASPO2
    HP1461 (CCP)HP0875 (CAT)
    HP1495 (TALA)HP0574 (RPI), HP1386 (RPE)
    ADDHP0572 (ADPT)
    CYSabcHP0107 (CYSS), HP1210 (SERAT)
    FUMt3HP1325 (FUM)
    GALKHP0360 (UDPG4E), HP0646 (GALU)
    GALTiHP0360 (UDPG4E), HP0646 (GALU)
    HEMEtiHP0163 (PPBNGS), HP0237 (HMBS); HP0239 (GLUTRR); HP0306 (G1SATi); HP0376 (FCLT); HP0381 (PPPGO); HP0476, HP0643 (GLUTRS); HP0604 (UPPDC1, UPPDC2); HP0687 (FE2abc); HP1224 (UPP3S); HP0665, HP1226 (CPPPGO)
    LYSt2rHP0290 (DAPDC)
    PGMTHP0360 (UDPG4E), HP1174 (GALt2, GLCt2), GALK, GALTi
    PHEt2rHP0291 (CHORM), HP0672 (EHGLAT, PHETA1, TYRTA), PPNDH
    THRt2rHP0098 (THRS), HP1189 (ASAD), HP1050 (HSK)
    TRPt2rHP1279 (IGPS, PRAIi), HP1280 (ANPRT)
    TYRt2rHP0291 (CHORM), HP1380 (PPND)
    UPPRTHP0005 (OMPDC), HP1257 (ORPT)
    URAt2HP0005 (OMPDC), HP1257 (ORPT)
    • ↵ a A double deletion of a gene in the first column and a gene in the second column is predicted to result in a lethal phenotype. All of the genes listed here are nonessential in single-deletion studies. Reaction abbreviations used here can be found in supplemental material Table S2.

  • TABLE 5.

    Required reactions for the synthesis of biomass constituents in rich mediuma

    PathwaybReaction abbreviation(s)Synthesis of biomass constituentc
    accoa(c)M1btn(c)ctp(c), dctp(c)dgtp(c), gtp(c)fad(c)mqn6(c)nadp(c), nadph(c)spmd(c)succoa(c)udpg(c), utp(c)M2ala-L(c)coa(c)dttp(c)met-L(c)nadh(c)peptido-EC(c)5mthf(c)clpn-HP(c)pe-HP(c)pg-HP(c)ps-HP(c)lps-HP(c)
    Amino acid degradationVALTAXXX
    Amino sugar metabolismUAGDP2, GF6PTA, PGAMT, G1PACT, UAGDP, UAGCVT, UAPGRXXXXXXXXXXXXXXXXXXX
    ATP de novo synthesisADK1XXXXXXXXXXXXXXXX
    Biotin biosynthesisCHCOAL, AOXSr, AMAOTr, DBTSr, BTS2XXXXXXXXXXXXXXXXXX
    Chorismate biosynthesisDDPA, DHQS, DHQD, SHK3Dr, SHKK, PSCVT, CHORSXX
    dNTP biosynthesisRNDR1, NDPK8, RNDR3, NDPK7, RNDR2, NDPK5, NDPK4XXXXXXXXXXXXXXXXXX
    Fatty acid synthesisACCOACr, MCOATA, C140SNXXXXX
    C160SN, C180SNXXXXXXXXXXXXXXXXXXX
    C181SN, C190cSNXXXX
    KAS-HP, KAS-HP2XXXXXXXXXXXXXXXXXXX
    Folate biosynthesisDHFRi, GTPCI, DNTPPA, DNMPPA, DHNPA, ADCL, PABB, DHFSX
    Fucose biosynthesisMAN6PI, PMANM, MAN1PT2r, GMAND, GFUCSXXXXXXXXXXXXXXXXXXX
    Glycerolipid synthesisCLPNS-HP, GLYKX
    DASYN-HP, PSSA-HPXXXX
    PGSA-HP, PGPP-HPXX
    PSD-HPX
    PSSA-HPXX
    GlycolysisTPIXXXX
    GTP de novo synthesisGK1XXX
    NDPK1XXXXXXXXXXXXXXXXXXX
    IMP synthesisPRPPSXXXXXXXXXXXXXXXXXX
    Isoprenoid biosynthesisDXPS, DXPRIi, MEPCT, CDPMEK, MECDPS, MECOPDH, DMPPS, IPDPSX
    LPS biosynthesisS7PI, GMHEPK, GMHEPPA, GMHEPAT, AGMHE, RFA-HP, A5PISO, KDOPS, KDOPP, KDOCT, UAGAAT-HP, UHGADA-HP, U23GAAT-HP, USHD-HP, U2GAAT, U2GAAT2, LPADSS-HP, MOAT-HP, RFAC-HP, LPSSYN-HPXXXXXXXXXXXXXXXXXXX
    Lysine/threonine biosynthesisDHDPS, DHDPRy, THDPS, SDPTA, SDPDS, DAPEXXXXXXXXXXXXXXXXXX
    Menaquinone biosynthesisICHORSi, OXGDC2, SHCHCS2, SUCBZS, SUCBZL, NPHS, DHNAOT2, AMMQT6X
    Methionine salvage pathwayDKMPPD, MDRPDr, MTAN, MTRI, MTRK, UNK2XXXXXXXXXXXXXXXXXX
    Nucleotide InterconversionCYTK1, NDPK3XXXXXXXXX
    DTMPKXXXXXXXXXXXXXXXXXX
    Nicotinate biosynthesisNADKX
    OthersGCALDDr, GLYCTO1X
    GLURXXXXXXXXXXXXXXXXXX
    PPAXXXXXXXXXXXXXXXXXXXX
    Pantothenate/CoA biosynthesisMOHMT, DPR, ASP1DC, PANTS, PNTK, PPNCL2, PPCDC, PTPATi, DPCOAKXXX
    Peptidoglycan biosynthesisUAMAS, UAMAGS, UAAGDS, ALAALAr, UGMDDS, PAPPT3, UAGPT3, PPTGS, UDCPDPXXXXXXXXXXXXXXXXXX
    Respiratory chainFRDOXXXXXXXXXXXXXXXXXXX
    Riboflavin metabolismGTPCII, DHPPDA, APRAUR, PMDPHT, D84PS, RBFSa, RBFSb, RBFK, FMNATX
    Spermidine biosynthesisARGDC, AGMT, ADMDCr, SPMSXXXXXXXXXXXXXXXXXX
    METATXXXXXXXX
    TCA cycleOORXXXXXXXXXXXXXXXXXX
    TCA cycleMALSX
    THF metabolismMTHFR2X
    Thioredoxin systemTRDRXXXXXXXXXXXXXXXXXX
    TransportO21XX
    PIMEtrXXXXXXXXXXXXXXXXXX
    PII2rXXXXXXXXXXXXXXXX
    HISabc, ILEabc, LEUabc, THMabc, VALabcXXXXXXXXXXXXXXXXXX
    METabcXXXXXXX
    Tyr, Phe, Trp biosynthesisCHORM
    UTP/CTP de novo synthesisUMPKXXXXXXXXXXXXXXXXXXX
    NDPK2XXXX
    CTPS1X
    OthersDMATT, GRTT, OCTDPSX
    sink-ahcys(c)XXXXX
    sink-amobXXXXXXXXXXXXXXXXXXX
    • ↵ a Reaction and metabolite abbreviations used here can be found in Table S2 in the supplemental material.

    • ↵ b dNTP, deoxynucleoside triphosphate; TCA, tricarboxylic acid.

    • ↵ c X, lethal deletion; blank cell, viable deletion. M1 and M2 columns represent the two largest clusters. M1: amp(c), atp(c), datp(c), and nad(c). M2: thm(c), thr-L(c), trp-L(c), tyr-L(c), arg-L(c), asn-L(c), asp-L(c), val-L(c), cys-L(c), gln-L(c), h2o(c), his-L(c), ile-L(c), leu-L(c), lys-L(c), phe-L(c), pheme(c), pro-L(c), ptrc(c), ser-L(c), glu-L(c), and gly(c). The symbol (c) signifies a cytosolic localization of the metabolite.

PreviousNext
Back to top
Download PDF
Citation Tools
Expanded Metabolic Reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an In Silico Genome-Scale Characterization of Single- and Double-Deletion Mutants
Ines Thiele, Thuy D. Vo, Nathan D. Price, Bernhard Ø. Palsson
Journal of Bacteriology Aug 2005, 187 (16) 5818-5830; DOI: 10.1128/JB.187.16.5818-5830.2005

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Bacteriology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Expanded Metabolic Reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an In Silico Genome-Scale Characterization of Single- and Double-Deletion Mutants
(Your Name) has forwarded a page to you from Journal of Bacteriology
(Your Name) thought you would be interested in this article in Journal of Bacteriology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Expanded Metabolic Reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an In Silico Genome-Scale Characterization of Single- and Double-Deletion Mutants
Ines Thiele, Thuy D. Vo, Nathan D. Price, Bernhard Ø. Palsson
Journal of Bacteriology Aug 2005, 187 (16) 5818-5830; DOI: 10.1128/JB.187.16.5818-5830.2005
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

energy metabolism
Gene Deletion
Helicobacter pylori
Models, Genetic

Related Articles

Cited By...

About

  • About JB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jbacteriology

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0021-9193; Online ISSN: 1098-5530