Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Bacteriology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
GENE REGULATION

Evolutionary Comparison of Ribosomal Operon Antitermination Function

Kristine B. Arnvig, Shirley Zeng, Selwyn Quan, Alexander Papageorge, Ning Zhang, Anuradha C. Villapakkam, Catherine L. Squires
Kristine B. Arnvig
1Division of Mycobacterial Research, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shirley Zeng
2Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, Massachusetts 02111
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Selwyn Quan
2Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, Massachusetts 02111
3Department of Biology, Stanford University, 371 Serra Mall, Stanford, California 94305
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexander Papageorge
2Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, Massachusetts 02111
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ning Zhang
2Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, Massachusetts 02111
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anuradha C. Villapakkam
3Department of Biology, Stanford University, 371 Serra Mall, Stanford, California 94305
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Catherine L. Squires
2Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, Massachusetts 02111
3Department of Biology, Stanford University, 371 Serra Mall, Stanford, California 94305
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: cathy.squires@tufts.edu
DOI: 10.1128/JB.00760-08
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • FIG. 1.
    • Open in new tab
    • Download powerpoint
    FIG. 1.

    Plasmids used in the study. Schematic diagrams of plasmids pSL102, pSL103, and pSL115 are shown (29). The genes encoding chloramphenicol acetyltransferase (cat) and β-lactamase (bla) are marked. The blaP and rrnGP2 promoters, the site of the rrn antitermination system insertion (AT), and the fragment containing a Rho-dependent terminator (ter) are also marked (29).

  • FIG. 2.
    • Open in new tab
    • Download powerpoint
    FIG. 2.

    Relative chloramphenicol resistance levels of the wild-type and ΔnusB strains containing the AT tester sequences in plasmid pSL103 derivatives (see Materials and Methods for details). P, promoter only (pSL102); P+T, promoter plus terminator (pSL103). All other strains have the indicated AT sequence inserted between the promoter and terminator. Identity of inserted AT sequences: Ec, E. coli; Bs, Bacillus subtilis; Cc, Caulobacter crescentus; Mj, Methanococcus jannaschii; Mt, Mycobacterium tuberculosis; Pa, Pseudomonas aeruginosa; Tm, Thermotoga maritima. Shown are triplicate experiments performed on separate days. The ΔnusB strains have a slower growth phenotype and thus display a lower level of chloramphenicol resistance when measured at the same time as the wild-type strains.

  • FIG. 3.
    • Open in new tab
    • Download powerpoint
    FIG. 3.

    Slot blot analysis of expression from the cat and bla genes. See Materials and Methods for experimental details. Duplicate samples were analyzed in this example. Abbreviations are the same as those used in Fig. 2.

  • FIG. 4.
    • Open in new tab
    • Download powerpoint
    FIG. 4.

    Alignment of the rrn AT regions of a sample of sequenced Gammaproteobacteria. Residues with more than 50% conservation at each position are shaded. Bars above the sequence denote the extent of the boxA and GT-rich boxC regions. The sequences are taken from published genomic data in the NCBI database.

Tables

  • Figures
  • TABLE 1.

    Strains and plasmids used in this study

    Strain or plasmidDescriptionSource or reference
    Strains
        MG1655 E. coli wild-type strain 6
        SQ736MG1655ΔnusB This work
        AP1MG1655(pSL102)This work
        AP5MG1655(pSL103)This work
        AP9MG1655(pSL115)This work
        SZ46MG1655ΔnusB(pSL102)This work
        SZ47-1MG1655ΔnusB(pSL103)This work
        SZ48-1MG1655ΔnusB(pSL115)This work
        STN1MG1655(pAT-Bs)This work
        STN2MG1655ΔnusB(pAT-Bs)This work
        STN3MG1655(pAT-Cc)This work
        STN4MG1655ΔnusB(pAT-Cc)This work
        STN5MG1655(pAT-Mj)This work
        STN6MG1655ΔnusB(pAT-Mj)This work
        STN9MG1655(pAT-Mt)This work
        STN10MG1655ΔnusB(pAT-Mt)This work
        STN11MG1655(pAT-Pa)This work
        STN12MG1655ΔnusB(pAT-Pa)This work
        STN15MG1655(pAT-Tm)This work
        STN16MG1655ΔnusB(pAT-Tm)This work
    Plasmids
        pSL102 29
        pSL103 29
        pSL115 29
        pHBA17Source of trpt′ terminator 1
        pAT-Bs B. subtilis ATThis work
        pAT-Cc C. crescentus ATThis work
        pAT-Mj M. jannaschii controlThis work
        pAT-Mt M. tuberculosis ATThis work
        pAT-Pa P. aeruginosa ATThis work
        pAT-Tm T. maritima ATThis work
        pAVC1pAT-Cc minus 16S terminatorThis work
        pAVC2pAVC1 plus trpt′ terminatorThis work
        pAVC3pAVC1 minus rrnGP2 promoterThis work
        pAVC4pSL102 minus rrnGP2 promoterThis work
  • TABLE 2.

    Sequences of oligonucleotides used

    OligonucleotideSequence (5′-3′)a
    nusBdel1Faatgtattgaaagccatcaaggcctgaaattagtaatgtgtaggctggagctgctt
    nusBdel1Rcatggaacggtcttccgtgaatctaccggcctggaagttcctattccgaagttc
    blagggaataagggcgacacggaaatg
    cattgccattgggatatatcaacggtgg
    EccgatcgccgctgagaaaaagcgaagcggcactgcTCTTTAACAAtttatcagacaatctgtgtgggcactcga
    BscgataataaagtcgcttaaacgagcggtaaacaaagtTCTTTGAAAActaaacaagacaaaacgtacctgttggatcc
    CccgatggggccgctgaggcggttcgggTCTTTGACATtgttgaattggaaagagaaacgcaggcggcggcgctctggcgatgggatcc
    MtcgatgtcgccccgaagcgggcggaaacaagcaagcgTGTTTGAGAActcaatagtgtgtttggtggatcc
    PacgatcctcggttgagacgaaagccttgaccaactgcTCTTTAACAAgtcgaatcaagcaattcgtgtgggtggatcc
    TmcgatcggcgacgttgagatgaagggTCTTCAGAAAgcggaaaaagaagaataaaacccggaaagagaagttggatc
    Mjcgattccggttgatcctgccggaggccactgctatcggggtccgactaagccatgcgagtcggatc
    • ↵ a Sequences of synthetic oligonucleotides cloned to generate AT regions. The boxA sequence is capitalized. The identities of the cloned AT sequences are as follows: Ec, E. coli; Bs, Bacillus subtilis; Cc, Caulobacter crescentus; Mt, Mycobacterium tuberculosis; Pa, Pseudomonas aeruginosa; Tm, Thermatoga maritima; Mj, Methanococcus jannaschii. The final nucleotide in the Caulobacter crescentus boxA that differs from all of the other boxA sequences shown is indicated in bold (CAT instead of CAA). This conserved A at the end of boxA is one of the nucleotides that interacts with NusA (5).

  • TABLE 3.

    cat and bla mRNA quantitation resultsa

    DescriptionSequence of boxA region% Readthrough
    Wild type (n = 5)ΔnusB (n = 6)
    P - -100100
    P - Ter2.1 ± 0.62.4 ± 0.3
    P ATEcTerGCUCUUUAACAA102.8 ± 12.81.8 ± 0.3
    P ATBsTerGUUCUUUGAAAA16.4 ± 1.22.6 ± 0.4
    P ATCcTerGGUCUUUGACAU7.5 ± 1.14.8 ± 1.4
    P ATMjTerGGUCCGACTAAG1.6 ± 0.31.4 ± 0.3
    P ATMtTerGUUGUUUGAGAA1.9 ± 0.31.8 ± 0.3
    P ATPaTerGCUCUUUAACAA77.5 ± 10.31.0 ± 0.0
    P ATTmTerGGUCUUCAGAAA3.2 ± 0.72.4 ± 0.7
    λ phageCGCUCUUACACA
    • ↵ a These analyses were repeated independently five to seven times with duplicate or triplicate samples analyzed each time. The λ phage boxA sequence is shown for comparison.

PreviousNext
Back to top
Download PDF
Citation Tools
Evolutionary Comparison of Ribosomal Operon Antitermination Function
Kristine B. Arnvig, Shirley Zeng, Selwyn Quan, Alexander Papageorge, Ning Zhang, Anuradha C. Villapakkam, Catherine L. Squires
Journal of Bacteriology Oct 2008, 190 (21) 7251-7257; DOI: 10.1128/JB.00760-08

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Bacteriology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Evolutionary Comparison of Ribosomal Operon Antitermination Function
(Your Name) has forwarded a page to you from Journal of Bacteriology
(Your Name) thought you would be interested in this article in Journal of Bacteriology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Evolutionary Comparison of Ribosomal Operon Antitermination Function
Kristine B. Arnvig, Shirley Zeng, Selwyn Quan, Alexander Papageorge, Ning Zhang, Anuradha C. Villapakkam, Catherine L. Squires
Journal of Bacteriology Oct 2008, 190 (21) 7251-7257; DOI: 10.1128/JB.00760-08
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Evolution, Molecular
operon
RNA, Ribosomal
Terminator Regions, Genetic

Related Articles

Cited By...

About

  • About JB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jbacteriology

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0021-9193; Online ISSN: 1098-5530