ABSTRACT
We determined the genome sequence of the type strain of Helicobacter canadensis, an emerging human pathogen with diverse animal reservoirs. Potential virulence determinants carried by the genome include systems for N-linked glycosylation and capsular export. A protein-based phylogenetic analysis places H. canadensis close to Wolinella succinogenes.
Helicobacter canadensis is an emerging pathogen that has been isolated from four Canadian patients with diarrhea and an Australian patient with bacteremia (3, 10). Wild geese have been identified as a reservoir in Europe (12, 13), while in China, the organism has been isolated from the feces of wild rodents (5). H. canadensis has also been isolated from laboratory rabbits (11) and from Guinea fowl in France (8). Atypical isolates have been obtained from swine feces from The Netherlands and Denmark (6). To shed light on the virulence and colonization factors of H. canadensis and to reassess its phylogenetic status, we performed whole-genome sequencing of the type strain, H. canadensis strain MIT 98-5491/NCTC 13241.
Single- and paired-end whole-genome shotgun sequencing was performed using 454 pyrosequencing technology, supplemented by Solexa sequencing. An initial assembly of the 454 single-end and paired-end data was created using a Newbler assembler (Roche), generating four scaffolds with an average size of 402 kb. The genome sequence was completed using a combination of BLASTX searches and analysis of the Solexa data, followed by confirmatory PCRs, PCR-assisted contig extension (1), and combinatorial PCR, with conventional and long-PCR protocols. Annotation was performed using GenDB (7).
The genome of H. canadensis NCTC 13241 consists of a single circular chromosome 1,623,845 bp in length, with a G+C content of 34%. There are 1,535 protein-coding sequences (CDSs), 40 transfer RNAs, and three rRNA loci.
Although phylogenetic analyses based on 16S rRNA gene sequences place H. canadensis in the genus Helicobacter (3), analysis of 23S rRNA sequences supports a clade containing H. canadensis and Wolinella succinogenes (2). Our own phylogenetic analysis using a concatenation of 482 conserved CDSs from the H. canadensis genome and related genomes provides strong support for a W. succinogenes/H. canadensis clade (data not shown), suggesting that the current taxonomy should be reevaluated.
One hundred seventeen CDSs from H. canadensis have no detectable ortholog in eight other genome-sequenced epsilonproteobacteria. We found only one contiguous region of difference longer than 10 genes (ROD1; HCAN_0630-HCAN_0663). Most CDSs in ROD1 are of unknown function, although, curiously, the region carries three versions of asparagine synthetase and contains six homopolymeric tracts. A second region of difference (ROD2; HCAN_0479-HCAN_0496) shows homology to HHGI1, a pathogenicity island from Helicobacter hepaticus strain ATCC 51449 that contributes to virulence in H. hepaticus (4).
The H. canadensis NCTC 13241 genome contains 29 potentially phase-variable genes with homopolymeric tracts, including several genes that, by homology, might be implicated in virulence, e.g., an immunoglobulin A protease (HCAN_0234) and two homologues of the vacuolating cytotoxin from H elicobacter pylori (HCAN_0457 and HCAN_714). The genome contains a capsular polysaccharide export locus similar to that in Campylobacter jejuni (9). Also, like C. jejuni, H. canadensis possesses genes encoding an N-linked glycosylation pathway, including two copies of PglB (HCAN_0729 and HCAN_0930).
Nucleotide sequence accession numbers.
The completed chromosome of H. canadensis has been deposited in GenBank under accession number CM000776 and project identification number 30719.
ACKNOWLEDGMENTS
Nick Loman and Lori Snyder were supported by BBSRC grant BBE111791.
FOOTNOTES
- Received 4 June 2009.
- Accepted 11 June 2009.
- Copyright © 2009 American Society for Microbiology