Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Bacteriology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
GENOME ANNOUNCEMENTS

Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi

Steven E. Schutzer, Claire M. Fraser-Liggett, Sherwood R. Casjens, Wei-Gang Qiu, John J. Dunn, Emmanuel F. Mongodin, Benjamin J. Luft
Steven E. Schutzer
1Department of Medicine, University of Medicine and Dentistry of New Jersey—New Jersey Medical School, Newark, New Jersey 07103
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: schutzer@umdnj.edu sherwood.casjens@path.utah.edu
Claire M. Fraser-Liggett
2Institute for Genome Sciences, University of Maryland, School of Medicine, Department of Microbiology and Immunology, Baltimore, Maryland 21201
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sherwood R. Casjens
3Department of Pathology, Division of Microbiology and Immunology, University of Utah Medical School, Salt Lake City, Utah 84112
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: schutzer@umdnj.edu sherwood.casjens@path.utah.edu
Wei-Gang Qiu
4Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10021
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John J. Dunn
5Biology Department, Brookhaven National Laboratory, Upton, New York 11793
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emmanuel F. Mongodin
2Institute for Genome Sciences, University of Maryland, School of Medicine, Department of Microbiology and Immunology, Baltimore, Maryland 21201
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Benjamin J. Luft
6Department of Medicine, Health Science Center, Stony Brook University, Stony Brook, New York 11794
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/JB.01158-10
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Borrelia burgdorferi is a causative agent of Lyme disease in North America and Eurasia. The first complete genome sequence of B. burgdorferi strain 31, available for more than a decade, has assisted research on the pathogenesis of Lyme disease. Because a single genome sequence is not sufficient to understand the relationship between genotypic and geographic variation and disease phenotype, we determined the whole-genome sequences of 13 additional B. burgdorferi isolates that span the range of natural variation. These sequences should allow improved understanding of pathogenesis and provide a foundation for novel detection, diagnosis, and prevention strategies.

Lyme disease is the most frequent tick-borne disease in North America and Europe (3, 16, 17). There are multiple variants of B. burgdorferi (1, 7, 15, 20, 21), the causative agent, but questions remain about how their variation correlates with different clinical manifestations. Whole-genome sequencing (WGS) can orient approaches to diagnostics and vaccines and help avoid potential host cross-reactivity. Improved diagnostics are needed because the best clinical sign, the erythema migrans skin rash, does not always occur. Diagnostic assays and vaccines (18) have been less than satisfactory. However, these were developed before WGS of microbes and the human genome. This project was stimulated by the initial finding of genotypes of B. burgdorferi associated with invasiveness/dissemination (15). This has been substantiated (7, 21).

The sequencing of strain B31 (6, 8) has accelerated progress in Lyme disease research. We sequenced 13 additional isolates, chosen to cover a large fraction of the genetic and geographic diversity and obtained from humans and other natural hosts (Table 1).

View this table:
  • View inline
  • View popup
TABLE 1.

B. burgdorferi isolates used in this study

These genomes were sequenced by the random shotgun method as described previously, using Sanger DNA sequencing to an estimated 8-fold coverage (12). Approximately 10,000 and 6,000 successful reads for the small and medium insert plasmid libraries, respectively, were sequenced, representing a total of about 14 Mbp of sequencing data for each. All plasmids were sequenced to closure unless noted otherwise (see Table S1 in the supplemental material). Genome annotation was performed using the JCVI Prokaryotic Annotation Pipeline (www.jcvi.org/cms/research/projects/prokaryotic-annotation-pipeline/overview/).

The B31 sequence showed that B. burgdorferi has many more replicons (DNA molecules) than other bacteria. Besides its 910-kbp linear chromosome, strain B31 has been shown to have 12 linear and 10 circular plasmids (5), expanding observations (2, 10) indicating that Borrelia bacteria universally harbor numerous plasmids, many essential for survival of the bacteria in mice and/or ticks (4). The newly sequenced genomes contain a total of 17,084,900 bp, averaging 1,314,223 bp/genome. Each strain carried between 13 and 21 plasmids (239 plasmids were sequenced, about half predicted to be linear replicons). At least 9 new plasmid types not in B31 were identified. Many plasmids underwent substantial rearrangements in different lineages. The linear chromosomes are very stable, with little variation among isolates. With the exception of a few differences at their right ends, the gene content of the chromosomes is essentially identical. Contrary to previous assumptions that genetic changes occurred only by slower point mutations, our initial WGS comparison of 4 strains showed that closely related B. burgdorferi strains frequently and more rapidly than by point mutation undergo horizontal exchange of genetic information (14). Evidence of this is also found in the newer genomes sequenced in this work.

The genetic diversity of B. burgdorferi appears to be maintained in part by neutral and adaptive processes, such as resistance to host immune defense mechanisms and host preferences (4, 9). Key questions remain on the genomic basis of these intra- and interspecific variations, particularly those associated with host resistance, high-frequency proliferation in wildlife populations, and invasiveness in humans.

Our long-range objectives are to develop a pangenomic picture of B. burgdorferi diversity (13) and to understand how the variations influence pathogenicity. We believe solutions for many of the problems associated with Lyme disease will come from scientific information, beginning with comparative genomics of this organism. Sequencing is a superb discovery tool whose greatest impact is realized when additional biology can implemented. Information from WGS of these well-characterized strains should provide a foundation for new hypotheses on the pathogenesis of Lyme disease and rational diagnostics and vaccines.

Nucleotide sequence accession numbers.

These sequences have been deposited in GenBank, and their Genome Project ID numbers and accession numbers are listed in Table 1 and in Table S1 in the supplemental material, respectively.

ACKNOWLEDGMENTS

This research was supported by the following grants from the National Institutes of Health: AI49003, AI37256, AI30071, GM083722, and RR03037. Additional funding was provided by the Lyme Disease Association and the Tami Fund.

FOOTNOTES

    • Received 28 September 2010.
    • Accepted 6 October 2010.
    • Accepted manuscript posted online 8 October 2010.
  • ↵† Supplemental material for this article may be found at http://dx.doi.org/10.1128/JB.01158-10.

  • Copyright © 2011, American Society for Microbiology

REFERENCES

  1. 1.↵
    Attie, O., J. F. Bruno, Y. Xu, D. Qiu, B. J. Luft, and W. G. Qiu. 2007. Co-evolution of the outer surface protein C gene (ospC) and intraspecific lineages of Borrelia burgdorferi sensu stricto in the northeastern United States. Infect. Genet. Evol. 7:1-12.
    OpenUrlCrossRefPubMedWeb of Science
  2. 2.↵
    Barbour, A. G., and C. F. Garon. 1987. Linear plasmids of the bacterium Borrelia burgdorferi have covalently closed ends. Science 237:409-411.
    OpenUrlAbstract/FREE Full Text
  3. 3.↵
    Benach, J. L., E. M. Bosler, J. P. Hanrahan, J. L. Coleman, G. S. Habicht, T. F. Bast, D. J. Cameron, J. L. Ziegler, A. G. Barbour, W. Burgdorfer, R. Edelman, and R. A. Kaslow. 1983. Spirochetes isolated from the blood of two patients with Lyme disease. N. Engl. J. Med. 308:740-742.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    Bockenstedt, L. K., J. Mao, E. Hodzic, S. W. Barthold, and D. Fish. 2002. Detection of attenuated, noninfectious spirochetes in Borrelia burgdorferi-infected mice after antibiotic treatment. J. Infect. Dis. 186:1430-1437.
    OpenUrlCrossRefPubMedWeb of Science
  5. 5.↵
    Casjens, S. 2000. Borrelia genomes in the year 2000. J. Mol. Microbiol. Biotechnol. 2:401-410.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    Casjens, S., N. Palmer, R. van Vugt, W. M. Huang, B. Stevenson, P. Rosa, R. Lathigra, G. Sutton, J. Peterson, R. J. Dodson, D. Haft, E. Hickey, M. Gwinn, O. White, and C. M. Fraser. 2000. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 35:490-516.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    Crowder, C. D., H. E. Matthews, S. Schutzer, M. A. Rounds, B. J. Luft, O. Nolte, S. R. Campbell, C. A. Phillipson, F. Li, R. Sampath, D. J. Ecker, and M. W. Eshoo. 2010. Genotypic variation and mixtures of Lyme Borrelia in Ixodes ticks from North America and Europe. PLoS One 5:e10650.
    OpenUrlCrossRefPubMed
  8. 8.↵
    Fraser, C. M., S. Casjens, W. M. Huang, G. G. Sutton, R. Clayton, R. Lathigra, O. White, K. A. Ketchum, R. Dodson, E. K. Hickey, M. Gwinn, B. Dougherty, J. F. Tomb, R. D. Fleischmann, D. Richardson, J. Peterson, A. R. Kerlavage, J. Quackenbush, S. Salzberg, M. Hanson, R. van Vugt, N. Palmer, M. D. Adams, J. Gocayne, et al. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580-586.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    Hodzic, E., S. Feng, K. Holden, K. J. Freet, and S. W. Barthold. 2008. Persistence of Borrelia burgdorferi following antibiotic treatment in mice. Antimicrob. Agents Chemother. 52:1728-1736.
    OpenUrlAbstract/FREE Full Text
  10. 10.↵
    Howe, T. R., L. W. Mayer, and A. G. Barbour. 1985. A single recombinant plasmid expressing two major outer surface proteins of the Lyme disease spirochete. Science 227:645-646.
    OpenUrlAbstract/FREE Full Text
  11. 11.
    Huang, W. M., M. Robertson, J. Aron, and S. Casjens. 2004. Telomere exchange between linear replicons of Borrelia burgdorferi. J. Bacteriol. 186:4134-4141.
    OpenUrlAbstract/FREE Full Text
  12. 12.↵
    Nelson, K. E., D. E. Fouts, E. F. Mongodin, J. Ravel, R. T. DeBoy, J. F. Kolonay, D. A. Rasko, S. V. Angiuoli, S. R. Gill, I. T. Paulsen, J. Peterson, O. White, W. C. Nelson, W. Nierman, M. J. Beanan, L. M. Brinkac, S. C. Daugherty, R. J. Dodson, A. S. Durkin, R. Madupu, D. H. Haft, J. Selengut, S. Van Aken, H. Khouri, N. Fedorova, H. Forberger, B. Tran, S. Kathariou, L. D. Wonderling, G. A. Uhlich, D. O. Bayles, J. B. Luchansky, and C. M. Fraser. 2004. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res. 32:2386-2395.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.↵
    Qiu, W. G., J. F. Bruno, W. D. McCaig, Y. Xu, I. Livey, M. E. Schriefer, and B. J. Luft. 2008. Wide distribution of a high-virulence Borrelia burgdorferi clone in Europe and North America. Emerg. Infect. Dis. 14:1097-1104.
    OpenUrlCrossRefPubMedWeb of Science
  14. 14.↵
    Qiu, W. G., S. E. Schutzer, J. F. Bruno, O. Attie, Y. Xu, J. J. Dunn, C. M. Fraser, S. R. Casjens, and B. J. Luft. 2004. Genetic exchange and plasmid transfers in Borrelia burgdorferi sensu stricto revealed by three-way genome comparisons and multilocus sequence typing. Proc. Natl. Acad. Sci. U. S. A. 101:14150-14155.
    OpenUrlAbstract/FREE Full Text
  15. 15.↵
    Seinost, G., D. E. Dykhuizen, R. J. Dattwyler, W. T. Golde, J. J. Dunn, I. N. Wang, G. P. Wormser, M. E. Schriefer, and B. J. Luft. 1999. Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect. Immun. 67:3518-3524.
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    Steere, A. C. 1989. Lyme disease. N. Engl. J. Med. 321:586-596.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    Steere, A. C., R. L. Grodzicki, A. N. Kornblatt, J. E. Craft, A. G. Barbour, W. Burgdorfer, G. P. Schmid, E. Johnson, and S. E. Malawista. 1983. The spirochetal etiology of Lyme disease. N. Engl. J. Med. 308:733-740.
    OpenUrlCrossRefPubMedWeb of Science
  18. 18.↵
    Steere, A. C., V. K. Sikand, F. Meurice, D. L. Parenti, E. Fikrig, R. T. Schoen, J. Nowakowski, C. H. Schmid, S. Laukamp, C. Buscarino, and D. S. Krause. 1998. Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. Lyme Disease Vaccine Study Group. N. Engl. J. Med. 339:209-215.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.
    Tourand, Y., J. Deneke, T. J. Moriarty, and G. Chaconas. 2009. Characterization and in vitro reaction properties of 19 unique hairpin telomeres from the linear plasmids of the Lyme disease spirochete. J. Biol. Chem. 284:7264-7272.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    Travinsky, B., J. Bunikis, and A. G. Barbour. 2010. Geographic differences in genetic locus linkages for Borrelia burgdorferi. Emerg. Infect. Dis. 16:1147-1150.
    OpenUrlCrossRefPubMed
  21. 21.↵
    Wormser, G. P., D. Liveris, J. Nowakowski, R. B. Nadelman, L. F. Cavaliere, D. McKenna, D. Holmgren, and I. Schwartz. 1999. Association of specific subtypes of Borrelia burgdorferi with hematogenous dissemination in early Lyme disease. J. Infect. Dis. 180:720-725.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.
    Zhang, J. R., and S. J. Norris. 1998. Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion. Infect. Immun. 66:3698-3704.
    OpenUrlAbstract/FREE Full Text
View Abstract
PreviousNext
Back to top
Download PDF
Citation Tools
Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi
Steven E. Schutzer, Claire M. Fraser-Liggett, Sherwood R. Casjens, Wei-Gang Qiu, John J. Dunn, Emmanuel F. Mongodin, Benjamin J. Luft
Journal of Bacteriology Jan 2011, 193 (4) 1018-1020; DOI: 10.1128/JB.01158-10

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Bacteriology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi
(Your Name) has forwarded a page to you from Journal of Bacteriology
(Your Name) thought you would be interested in this article in Journal of Bacteriology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi
Steven E. Schutzer, Claire M. Fraser-Liggett, Sherwood R. Casjens, Wei-Gang Qiu, John J. Dunn, Emmanuel F. Mongodin, Benjamin J. Luft
Journal of Bacteriology Jan 2011, 193 (4) 1018-1020; DOI: 10.1128/JB.01158-10
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • Nucleotide sequence accession numbers.
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jbacteriology

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0021-9193; Online ISSN: 1098-5530