Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Bacteriology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

An Amino Acid Substitution in RNA Polymerase That Inhibits the Utilization of an Alternative Sigma Factor

Anna F. Wang Erickson, Padraig Deighan, Cinthia P. Garcia, Robert O. J. Weinzierl, Ann Hochschild, Richard Losick
Richard L. Gourse, Editor
Anna F. Wang Erickson
aDepartment of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Padraig Deighan
bDepartment of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
cDepartment of Biology, Emmanuel College, Boston, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cinthia P. Garcia
bDepartment of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
cDepartment of Biology, Emmanuel College, Boston, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert O. J. Weinzierl
dDepartment of Life Sciences, Imperial College London, London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ann Hochschild
bDepartment of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard Losick
aDepartment of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard L. Gourse
University of Wisconsin—Madison
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/JB.00277-17
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Sigma (σ) factors direct gene transcription by binding to and determining the promoter recognition specificity of RNA polymerase (RNAP) in bacteria. Genes transcribed under the control of alternative sigma factors allow cells to respond to stress and undergo developmental processes, such as sporulation in Bacillus subtilis, in which gene expression is controlled by a cascade of alternative sigma factors. Binding of sigma factors to RNA polymerase depends on the coiled-coil (or clamp helices) motif of the β′ subunit. We have identified an amino acid substitution (L257P) in the coiled coil that markedly inhibits the function of σH, the earliest-acting alternative sigma factor in the sporulation cascade. Cells with this mutant RNAP exhibited an early and severe block in sporulation but not in growth. The mutant was strongly impaired in σH-directed gene expression but not in the activity of the stress-response sigma factor σB. Pulldown experiments showed that the mutant RNAP was defective in associating with σH but could still associate with σA and σB. The differential effects of the L257P substitution on sigma factor binding to RNAP are likely due to a conformational change in the β′ coiled coil that is specifically detrimental for interaction with σH. This is the first example, to our knowledge, of an amino acid substitution in RNAP that exhibits a strong differential effect on a particular alternative sigma factor.

IMPORTANCE In bacteria, all transcription is mediated by a single multisubunit RNA polymerase (RNAP) enzyme. However, promoter-specific transcription initiation necessitates that RNAP associates with a σ factor. Bacteria contain a primary σ factor that directs transcription of housekeeping genes and alternative σ factors that direct transcription in response to environmental or developmental cues. We identified an amino acid substitution (L257P) in the B. subtilis β′ subunit whereby RNAPL257P associates with some σ factors (σA and σB) and enables vegetative cell growth but is defective in utilization of σH and is consequently blocked for sporulation. To our knowledge, this is the first identification of an amino acid substitution within the core enzyme that affects utilization of a specific sigma factor.

FOOTNOTES

    • Received 19 April 2017.
    • Accepted 5 May 2017.
    • Accepted manuscript posted online 15 May 2017.
  • Supplemental material for this article may be found at https://doi.org/10.1128/JB.00277-17 .

  • Copyright © 2017 American Society for Microbiology.

All Rights Reserved .

View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
An Amino Acid Substitution in RNA Polymerase That Inhibits the Utilization of an Alternative Sigma Factor
Anna F. Wang Erickson, Padraig Deighan, Cinthia P. Garcia, Robert O. J. Weinzierl, Ann Hochschild, Richard Losick
Journal of Bacteriology Jun 2017, 199 (14) e00277-17; DOI: 10.1128/JB.00277-17

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Bacteriology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
An Amino Acid Substitution in RNA Polymerase That Inhibits the Utilization of an Alternative Sigma Factor
(Your Name) has forwarded a page to you from Journal of Bacteriology
(Your Name) thought you would be interested in this article in Journal of Bacteriology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
An Amino Acid Substitution in RNA Polymerase That Inhibits the Utilization of an Alternative Sigma Factor
Anna F. Wang Erickson, Padraig Deighan, Cinthia P. Garcia, Robert O. J. Weinzierl, Ann Hochschild, Richard Losick
Journal of Bacteriology Jun 2017, 199 (14) e00277-17; DOI: 10.1128/JB.00277-17
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Bacillus subtilis
DNA-Directed RNA Polymerases
Escherichia coli
Gene Expression Regulation, Bacterial
Gene Expression Regulation, Enzymologic
sigma factor
RNA polymerase
sigma factor
sporulation
transcription

Related Articles

Cited By...

About

  • About JB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jbacteriology

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0021-9193; Online ISSN: 1098-5530