Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Bacteriology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article | Spotlight

Agrobacterium tumefaciens Deploys a Versatile Antibacterial Strategy To Increase Its Competitiveness

Manda Yu, Yi-Chieh Wang, Ching-Jou Huang, Lay-Sun Ma, Erh-Min Lai
Laurie E. Comstock, Editor
Manda Yu
aInstitute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Manda Yu
Yi-Chieh Wang
aInstitute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ching-Jou Huang
aInstitute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lay-Sun Ma
aInstitute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Erh-Min Lai
aInstitute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Erh-Min Lai
Laurie E. Comstock
Brigham and Women's Hospital/Harvard Medical School
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/JB.00490-20
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The type VI secretion system (T6SS) is a widespread antibacterial weapon capable of secreting multiple effectors for inhibition of competitor cells. Most of the effectors in the system share the same purpose of target intoxication, but the rationale for maintaining various types of effectors in a species is not well studied. In this study, we showed that a peptidoglycan amidase effector in Agrobacterium tumefaciens, Tae, cleaves d-Ala-meso-diaminopimelic acid (mDAP) and d-Glu bonds in peptidoglycan and is able to suppress the growth of Escherichia coli recipient cells. The growth suppression was effective only under the condition in which E. coli cells are actively growing. In contrast, the Tde DNase effectors in the strain possessed a dominant killing effect under carbon starvation. Microscopic analysis showed that Tde triggers cell elongation and DNA degradation, while Tae causes cell enlargement without DNA damage in E. coli recipient cells. In a rich medium, A. tumefaciens harboring only functional Tae was able to maintain competitiveness among E. coli and its own sibling cells. Growth suppression and the competitive advantage of A. tumefaciens were abrogated when recipient cells produced the Tae-specific immunity protein Tai. Given that Tae is highly conserved among A. tumefaciens strains, the combination of Tae and Tde effectors could allow A. tumefaciens to better compete with various competitors by increasing its survival during changing environmental conditions.

IMPORTANCE The T6SS encodes multiple effectors with diverse functions, but little is known about the biological significance of harboring such a repertoire of effectors. We reported that the T6SS antibacterial activity of the plant pathogen Agrobacterium tumefaciens can be enhanced under carbon starvation or when recipient cell wall peptidoglycan is disturbed. This led to a newly discovered role for the T6SS peptidoglycan amidase Tae effector in providing a growth advantage dependent on the growth status of the target cell. This is in contrast to the Tde DNase effectors that are dominant during carbon starvation. Our study suggests that combining Tae and other effectors could allow A. tumefaciens to increase its competitiveness among changing environmental conditions.

FOOTNOTES

    • Received 28 August 2020.
    • Accepted 2 November 2020.
    • Accepted manuscript posted online 9 November 2020.
  • Supplemental material is available online only.

  • Copyright © 2021 Yu et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Agrobacterium tumefaciens Deploys a Versatile Antibacterial Strategy To Increase Its Competitiveness
Manda Yu, Yi-Chieh Wang, Ching-Jou Huang, Lay-Sun Ma, Erh-Min Lai
Journal of Bacteriology Jan 2021, 203 (3) e00490-20; DOI: 10.1128/JB.00490-20

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Bacteriology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Agrobacterium tumefaciens Deploys a Versatile Antibacterial Strategy To Increase Its Competitiveness
(Your Name) has forwarded a page to you from Journal of Bacteriology
(Your Name) thought you would be interested in this article in Journal of Bacteriology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Agrobacterium tumefaciens Deploys a Versatile Antibacterial Strategy To Increase Its Competitiveness
Manda Yu, Yi-Chieh Wang, Ching-Jou Huang, Lay-Sun Ma, Erh-Min Lai
Journal of Bacteriology Jan 2021, 203 (3) e00490-20; DOI: 10.1128/JB.00490-20
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

type VI secretion system
effector
peptidoglycan amidase
interbacterial competition
Agrobacterium tumefaciens

Related Articles

Cited By...

About

  • About JB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jbacteriology

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0021-9193; Online ISSN: 1098-5530