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FIG. 3. Solubilization of PBPs of S. aureus. A fluorogram of
['4C]penicillin G-PBP complexes after sodium dodecyl sulfate-
polyacrylamide gel electrophoresis is shown. The membrane frac-
tion of S. aureus (18.5 mg of protein per ml, 100 ,ul) was treated as

described in the text. For descriptions offractions A to E, see Table
1.

and 13, whereas S. aureus PBPs 1 to 4 appeared in different
fractions: PBP 1 in fractions 11 to 20, PBPs 2 and 3 in flow-
through fractions 2 to 6 and fractions 10 to 17 with a main
peak in fraction 11, and PBP 4 in flow-through fractions and
fractions 10 to 17 (Fig. 4A). Three new minor PBPs that were
located between PBPs 3 and 4 on a sodium dodecyl sulfate-
polyacrylamide electrophoresis gel appeared in fractions 13
to 16. The transglycosylase activity in fraction 12 (235 pmol
of disaccharide unit incorporated into peptidoglycan per mg
of protein per h) was about 40 times that in the crude
membranes (6 pmol/mg per h), and the yield of the transgly-
cosylase activity after DEAE-cellulose chromatography
(fractions 11 to 16) was calculated to be 84%.
Chromatographic separation of the activities of transgly-

cosylase and PBPs of M. luteus was performed in a similar
way. The results in Fig. 4B show that the transglycosylase
activity was eluted mainly in fractions 13 to 14, whereas
major PBPs were eluted in different fractions: PBP 1 in
fractions 13 to 18, PBP 2 in fractions 18 to 19, PBP 3 in
fractions 14 to 17, and PBPs 4 and 5 in fractions 15 to 16.
Only PBP 6 appeared in similar fractions to those which
showed transglycosylase activity (fractions 12 to 16). Most
proteins were eluted in fractions 11 to 15, and, therefore,
purification of the transglycosylase activity was not high.
Fraction 13 showed only about a three-times-higher specific
transglycosylase activity (190 pmol/mg per h) than that of the
crude membranes (60 pmol/mg per h). The yield of transgly-
cosylase activity in DEAE-cellulose column chromatogra-
phy (fractions 11 to 16) was 55%.

Ampicillin-affinity column chromatography. All of the
staphylococcal and micrococcal PBPs could be adsorbed
completely on a column of ampicillin-CH-Sepharose and
eluted by treatment with 1 M hydroxylamine at 30°C (Fig. 5).
The transglycosylase activities in the detergent extracts of

the staphylococcal and micrococcal membranes and in the
fractions from DEAE-cellulose columns were not adsorbed
but appeared in flow-through fractions (Fig. 5).

DISCUSSION
In gram-negative E. coli, higher-molecular-weight PBPs

play essential roles in the process of cell duplication (21, 24,
26). Recently, dual enzyme activities for peptidoglycan
synthesis were found in E. coli PBPs IA (8), lBs (18-19),
and 3 (7). Each of these proteins shows activities for both
transglycosylase and transpeptidase, which together carry
out the synthesis of the cross-linked network of peptidogly-
can from the lipid-linked precursor in cell walls and septa.
The present results on gram-positive S. aureus and M.

luteus, showing the separation of the major transglycosylase
activities from PBPs, suggest that the mechanism of peptido-
glycan synthesis in these gram-positive cocci is different
from that in E. coli.

In S. aureus, the activity of transglycosylase was separat-
ed from the PBPs by adsorption on an ampicillin-Sepharose
column, and this conclusion was supported by two other
independent procedures: fractional solubilization with a de-
tergent and DEAE-cellulose column chromatography. Thus,
it is highly probable that the major transglycosylase activity
in S. aureus, which is measurable in normal assay condi-
tions, is not a property of PBPs in this bacterium. Although it
is possible that the PBPs still possess slight transglycosylase
activity that is not measurable by the above assay method, it
seems probable that transglycosylation, which synthesizes
uncross-linked peptidoglycan strands, and transpeptidation,
which cross-links them, are carried out by separate en-
zymes. The correlations of the half-inhibitory concentrations
of moenomycin and macarbomycin on transglycosylase ac-
tivity with their minimum inhibitory concentrations suggest
that the transglycosylase measured is the killing target of
these antibiotics and that the transglycosylase activity that is
not a PBP is essential in the biosynthesis of peptidoglycan in
living staphylococcal cells. Isolation of a mutant with altered
sensitivities to these antibiotics of its transglycosylase activi-
ty in vitro and cell growth in vivo is required for a final
conclusion on this point.
The physiological functions of PBPs in S. aureus have

been studied by several investigators (2, 4, 5, 13, 28). Studies
with methicillin-resistant strains of S. aureus have suggested
that the higher-molecular-weight PBPs 1 to 3 or any one of
them may be the target(s) of this ,B-lactam antibiotic and
probably function in forming the cross-linkage of the pepti-
doglycan (4, 5). The lowest-molecular-weight PBP, PBP 4,
which has activities of DD-carboxypeptidase and penicillin-
ase (13), is thought to be involved in the secondary cross-
linking of peptidoglycan because the lack or inhibition of this
enzyme causes formation of a hypocross-linked cell wall but
is not lethal to the cells (2, 28).

Results for M. luteus are more confusing. Complete
separation of its major transglycosylase activity from the
PBPs could only be achieved by adsorption on an ampicillin-
affinity column, and the inhibitory concentrations of the
transglycosylase inhibitors moenomycin and macarbomycin
for the micrococcal transglycosylase activity in vitro were
very high (more than 500 ,ug/ml), whereas the in vivo
minimum inhibitory concentration was 10 ,ug/ml. Since the
micrococcal transglycosylae activity is barely affected at this
level, we might have to suspect that the antibiotic is affecting
another enzyme, possibly another peptidoglycan transglyco-
sylase. Further work is necessary.
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FIG. 4. DEAE-cellulose chromatography of the transglycosylase activities and PBPs in S. aureus (A) and M. luteus (B). (A) Extract of S.
aureus membranes in 1.5-times-diluted buffer A containing 1% Triton X-100 and 1 M NaCl (6.5 mg of protein per ml) diluted with an equal vol-
ume of water and dialyzed against 20 mM Tris-hydrochloride buffer (pH 7.5) containing 0.1 mM MgCl2 and 0.5% Triton X-100 (buffer B). The
dialyzed solution (1.5 ml, 4.9 mg of protein) was applied to a column (0.6 by 25 cm) of DEAE-cellulose DE52, chloride form, equilibrated with
buffer B (flow-through fraction, [fraction 1]). The column was then washed with 8 ml of buffer B (fractions 2 and 3), and the proteins were elut-
ed with a linearly increasing concentration gradient of NaCl in the same buffer. Fractions of 1 ml each (fractions 4 to 20) were collected.
Transglycosylase activity was measured as described in the text in the presence of 0.29% (wt/vol) Triton X-100, and PBPs were detected by
fluorography of the sodium dodecyl sulfate-polyacrylamide gel. (B) Extract of M. luteus membranes with buffer A containing 1% Triton X-100
(2.8 mg of protein per ml) diluted with an equal volume of buffer A and 4 ml of the solution (5.6 mg of protein) and applied to a column (0.6 by
25 cm) of DEAE-cellulose DE52, chloride form, which was equilibrated with a solution of buffer A containing 0.5% Triton X-100. The column
was washed with 8 ml of the same buffer solution (fractions 2 and 3), and proteins were eluted with the buffer solution containing a linearly in-
creasing concentration gradient of NaCl. Samples of 1 ml each (fractions 4 to 20) were collected. Further procedures were as for (A) above.
Fluorograms of PBP-[14C]penicillin G complexes on sodium dodecyl sulfate-polyacrylamide electrophoresis gels are shown with graphs of
transglycosylase activity and protein concentration.
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FIG. 5. Separation of transglycosylase activities of S. aureus (A)

and M. luteus (B) from PBPs by ampicillin-affinity chromatography.
Volumes (4 ml) of extracts of the membranes in 50 mM Tris-
hydrochloride buffer (pH 7.5)-0.1 mM MgCl2-1% (wt/vol) Triton X-
100-1 M NaCl containing 19.3 mg of S. aureus or 13.7 mg of M.
luteus proteins were mixed with 0.2 ml (S. aureus) or 0.1 ml (M.
luteus) of a suspension of ampicillin-CH-Sepharose which had been
washed with buffer A containing 1 M NaCl and 1% (wt/vol) Triton
X-100. The mixtures were kept at 30°C for 30 min and then drained
in a column to obtain the flow-through fraction (fraction 1). The
columns were washed with 6 ml of buffer A containing 1% (wt/vol)
Triton X-100 and 1 M NaCl (fractions 2 to 5), suspended in 0.5 ml of
0.5 M Tris-hydrochloride buffer (pH 7.6) containing 1% Triton X-100
and 1 M hydroxylamine for 10 min at 30°C, and drained (fraction 6).
The procedure of elution of proteins with hydroxylamine was
repeated once more for 120 min at 30°C (fraction 7). The fractions
from the columns were dialyzed against buffer A containing 1%
Triton X-100 at 0°C for 4 h. Transglycosylase activity was measured
as described in the text for 1 h with a final Triton X-100 concentra-
tion of0.29% (wt/vol) for S. aureus and 0.43% (wt/vol) for M. luteus.
Fluorograms of PBP-[4C]penicillin G complexes on sodium dodecyl
sulfate-polyacrylamide electrophoresis gels are shown with graphs
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