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TABLE 4. Effect of catabolite repression on
degQ'-'lacZ expression'

1-Galactosidase
sp act (U/mg

Strain Relevant genotype of protein) inb:
CGE CSE

medium medium

QB4255 amyE::(degQ'-'lacZ cat) 68 890
QB4260 amyE::(degQ'-'lacZ cat) A(degS 19 240

degU)::aphA3
QB4261 amyE::(degQ'-'lacZ cat) 33 520

degU32(Hy)
a Cultures were grown at 37°C in C medium supplemented with either

glucose plus potassium glutamate (CGE) or potassium succinate plus potas-
sium glutamate (CSE) and chloramphenicol (5 g.g/ml).

b 1-Galactosidase specific activities were determined in extracts prepared
from exponentially growing cells.

and in strain QB4260, deleted for degS-degU, this increase
did not occur (Fig. 6).

Recently, we showed that limitation of phosphate also led
to an increase of degQ expression (the results will be
published elsewhere). These results suggest that this sensory
transduction pathway may respond to a nutritional signal,
possibly limitation of carbon, nitrogen, or phosphate
sources, leading to an increased expression of the target
genes.

DISCUSSION

The adjacent degS and degU genes controlling the rates of
synthesis of a class of degradative enzymes constitute an
operon transcribed from a putative cu promoter upstream
from the degS gene, although some minor promoter activity
may be present within the degS coding sequence (see
Results), as has also been observed for the E. coli NarX-
NarL two-component system (43, 53). The use of lacZ
fusions indicated that the degS-degU operon was expressed
at a low level, which did not vary noticeably under the
different culture conditions we have used.
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FIG. 6. Time course of degQ expression as measured by a

degQ'-'lacZ translational fusion after resuspension of cells in nitro-
gen-free medium. Cells were grown to the mid-log phase in CGCH
medium and suspended in GP medium. 3-Galactosidase specific
activities were determined as a function of time (hours) after
resuspension. Symbols: 0, strain QB4255; U, strain QB4260; A,
strain QB4261.
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FIG. 7. Alignment of possible catalytic domains of the putative
B. subtilis protein kinase DegS and of eucaryotic protein kinases,
which may be implicated in the phosphorylation of their substrates.
The common pair of aspartate residues may allow binding through
Mg2+ of the ATP phosphate groups (6). Amino acid sequences are as
reviewed by Hanks et al. (16). Abbreviations: Src, human fetal liver
cell homolog of oncogene product from Rous avian sarcoma virus;
Yes, human fibroblast homolog of oncogene product from Yamagu-
chi avian sarcoma virus; SRA3, cyclic AMP-dependent protein
kinase from Saccharomyces cerevisiae; cAPK, cyclic AMP-depen-
dent protein kinase from bovine cardiac muscle; cGPK, cyclic
GMP-dependent protein kinase from bovine lung; CDC28, cell-
division-cycle gene product from S. cerevisiae; SNF1, protein
kinase involved in catabolite repression of S. cerevisiae invertase.
Numbers correspond to positions in the respective amino acid
sequences. Comparisons were made as indicated in the legend to
Fig. 2.

Two independent regulatory mechanisms, the degS-degU
system and induction by sucrose, affect the expression of
sacB, encoding the secreted sucrose-hydrolyzing enzyme
levansucrase. Two targets of these regulatory systems have
been identified in the DNA region upstream from sacB: a
putative target of the DegU effector upstream from the sacB
promoter (18, 24) and a palindromic sequence, downstream
from this putative CA promoter, which acts as a transcrip-
tional terminator. This latter sequence is the target of the
SacY antiterminator, allowing the expression of sacB in the
presence of inducer (4, 65).

It is probable that the DegS protein of B. subtilis is a
protein kinase, since it shows strong amino acid sequence
similarities with the procaryotic protein kinases NtrB,
CheA, EnvZ, and PhoR (20, 21, 23, 26, 43, 53, 60, 61).
Amino acid similarities between DegS and eucaryotic pro-
tein kinases are not obvious, except for a short domain (Fig.
7) which was found in eucaryotic protein kinases and a
number of bacterial phosphotransferases that use ATP as a
phosphate donor (6, 16). It contains two aspartate residues,
corresponding to Asp-152 and Asp-168 in DegS, which may
interact with the phosphate group of ATP through Mg2+ salt
bridges. It may be worth mentioning that this domain is
located in the vicinity of the histidine residue which is
conserved in seven modulators (43, 53) and which may
therefore be a candidate for an autophosphorylation site of
DegS. The mechanism established in chemotaxis (Che),
phosphate (Pho), and nitrogen (Ntr) regulation involves
transfer of a phosphoryl moiety from a histidine residue of
the protein kinase (CheA, PhoR, and NtrB) to an aspartate
residue in the effector (CheY, PhoB, and NtrC) (20, 21, 43,
55, 60). The CheY effector contains three aspartate residues
which are clustered to form an acidic binding pocket, as
determined from the three-dimensional structure (54, 55).
These three residues are also present at the corresponding
positions in DegU: Asp-10, Asp-11, and Asp-56. Moreover,
the replacement of Asp-56 by Asn in the degUJ46 mutant
abolishes the capacity of the DegU protein to activate
degradative enzyme synthesis. An aspartate residue at the
corresponding position of PhoB, Asp-53, was shown to be
phosphorylated by PhoR (K. Makino et al., 11th Annual
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Meeting of the Molecular Biology Society of Japan, 1988;
cited by Nohno et al. [43]). These data support the hypoth-
esis that the DegU effector may also be phosphorylated at an
aspartate residue and that the degUJ46 mutation inactivates
this site of phosphorylation. The degU32(Hy) mutation
modifies position 12 of DegU, which is close to the aspartate
residues which could contribute to the structure of the
possible phosphorylation site. This mutation not only leads
to hyperproduction of degradative enzymes, but also allows
sporulation in the presence of glucose. Interestingly, a
similar glucose-insensitive sporulation phenotype results
from the sof-J mutation in SpoOA, which also represents a
modification close to the putative phosphorylation site of
this effector, which belongs to the same family as DegU (22,
52).
Three hypotheses have been proposed concerning the

mode of action of the degU32-encoded protein (19). The first
is that this change alleviates the need for phosphorylation
and causes this protein to become a constitutive transcrip-
tional activator. The second is that the change makes the
protein a better substrate for a related modulator protein,
which activates the modified effector by "cross-talk." The
third is that this mutation leads to an increase in the rate of
phosphorylation or a decrease in the rate of dephosphoryla-
tion of the DegU protein. In view of one of the results
presented here, i.e., the suppression of the Hy phenotype of
degU32 by the degS220-deficient mutation, the first two
hypotheses become unlikely, leaving only the third hypoth-
esis as a plausible one.

In addition to mutations modifying the N-terminal receiver
domain of DegU, leading either to hyperproduction
(degU32, degU9, degU24) or to deficiency of degradative
enzyme production (degU146), we identified deficient muta-
tions modifying its C-terminal portion. The DegU protein
belongs to a subfamily of effectors (8, 43, 53), in which
similarities extend well beyond the N-terminal receiver
domain. In another member of this subfamily, OmpR, mu-
tations could also be identified that altered its C-terminal
domain (40). This indicates that these regions of the DegU
and OmpR regulatory proteins are required for their func-
tion.
The control of the target genes by the DegU effector,

which is hypothesized to be a transcriptional activator
containing a DNA-binding domain, may be the result of
direct interaction between the effector and target sites, such
as the DNA regions upstream from the structural genes of
levansucrase and proteases. Two possible helix-turn-helix
DNA-binding motifs can be proposed for the DegU protein.
One was located by Tanaka and Kawata (57) in the N-
terminal receiver part, which gave a negative score (-333) in
the Dodd-Egan method for predicting lambda Cro-like DNA-
binding regions (10). A second domain in the C-terminal
region of DegU can be deduced from amino acid sequence
similarities with putative DNA-binding domains of UhpA,
FixJ, and ComA (8, 11, 14) and is shown in Fig. 8. The low
positive score for this second domain is still not sufficient for
it to be considered a likely candidate involved in DNA
binding. It remains to be determined whether DegU directly
binds to DNA.
Two other genes, degQ and degR, which encode small

polypeptides, are involved in the degS-degU-mediated con-
trol of the target genes. Although the presence of multiple
copies of the degQ or degR genes led to an increase of
degradative enzyme production, elimination of both genes
from the B. subtilis genome did not lead to any recognizable
phenotype or prevent the expression of the degU32(Hy)
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FIG. 8. Possible helix-turn-helix domain in the DegU protein.
Amino acid sequence similarities were found with DNA-binding
domains proposed for the FixJ, ComA, and UhpA effectors (8, 11,
14). Alignments between DegU and the GerE and MalT regulatory
proteins were as described previously (19). Indicated scores corre-
spond to predictions of X Cro-like DNA-binding regions by using the
weight matrix of Dodd and Egan (10). Comparisons were made as
indicated in the legend to Fig. 2.

phenotype (62, 63). The role of the degQ and degR genes as
regulators of the expression of the target genes is therefore
not clear. However, we have evidence that the expression of
the degQ gene is regulated by the DegS-DegU pair. Indeed,
we observed that the synthesis of the DegQ polypeptide is
subject to catabolite repression by glucose, but that the level
of synthesis, whether or not it is repressed by glucose, is
always higher in a strain carrying degS-degU than in a strain
deleted for the operon. This observation seems to indicate
that the degS-degU operon somehow contributes to the
expression of degQ. An additional effect was observed under
conditions of nitrogen starvation, since these led to a strong
increase in the level of degQ expression in strain QB4255
carrying wild-type degS and degU alleles. However, no
increase was observed in a strain from which degS and degU
were deleted or in a degU32(Hy) strain. Since the increase of
the rate of DegQ synthesis in strain QB4255 occurred in the
presence of an excess of glucose, it apparently overcame
catabolite repression of DegQ synthesis. This situation is
reminiscent of histidase synthesis in Klebsiella aerogenes, in
which activation by NtrB-NtrC under conditions of nitrogen
limitation occurred independently from catabolite repression
(30). A similar increase of DegQ synthesis was observed
under conditions of phosphate limitation (data not shown),
leading to the hypothesis that this signal transduction path-
way may be involved in sensing limitations of carbon,
nitrogen, or phosphate sources, which usually occur at the
end of the exponential growth phase. This could trigger an
adaptive response of the cell, which may react to such a
limitation by raising the level of enzymes providing alterna-
tive nutrients. It would explain the increase in the rates of
synthesis of proteases in rich media after the end of the
exponential growth phase (12, 36). As expected, such an
increase is not observed in degS- or degU-deficient mutants
(27). In minimal medium, however, activation by DegS-
DegU is not restricted to the late growth phase. Indeed,
activation of levansucrase synthesis occurs during the expo-
nential growth phase in minimal C medium containing 1%
glucose and 0.05% casein hydrolysate. Under these condi-
tions, strain QB4093 synthesizes levansucrase at a high
constitutive level, since the transcriptional terminator down-
stream from the sacB promoter was deleted in this strain
(24). Introduction of a degS-deficient mutation into this
strain or elimination of degS-degU by deletion lowers this
level about 10-fold (24; data not shown). In the same way, a
degS-degU deletion abolishes the degQ36(Hy) phenotype
(data not shown).
The data presently available are not sufficient to present a

detailed model for the complex regulatory system defined by
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the degS, degU, degR, and degQ genes. However, we would
like to propose a hypothetical model for the function of the
DegU effector which may guide further work. We postulated
earlier that the degU32(Hy) mutation leads to an increase in
the rate of phosphorylation of the DegU effector, which, in
turn, leads to hyperproduction of degradative enzymes and
low transformation frequency. The presence of both the
degU32(Hy) and degU146 mutations in the degU gene led to
a loss of degradative enzyme production, but restored trans-
formability. Apparently, transformation frequency is high
when degradative enzyme production is low, and vice versa.
Since the DegU effector is thought to exist in two different
forms, a phosphorylated and a nonphosphorylated form, we
propose that the DegU effector is an ambivalent gene regu-
lator, as was shown previously for the abrB regulatory
protein ofB. subtilis (45). The phosphorylated form of DegU
would be necessary for degradative enzyme production, and
the nonphosphorylated form would be required for transfor-
mation and for the increase of DegQ synthesis under condi-
tions of nitrogen starvation. Both forms would act as posi-
tive regulators of these processes, since either deletion of
degS-degU or disruption of degU abolished degradative
enzyme production, transformability, and the increase of
DegQ during nitrogen starvation. This model is also consis-
tent with the suppression of the degU32(Hy)-associated
phenotypes by the degS220 mutation, which abolished deg-
radative enzyme production and restored transformability.
This phenotype is as expected if the degS220 mutation leads
to loss of DegS protein kinase activity, leaving the DegU
effector in the nonphosphorylated state. Moreover, the
phosphorylated form of DegU appears to be a negative
regulator of flagellar synthesis, since the degU32(Hy) mutant
is devoid of flagella, in contrast with the strain deleted for
degS-degU, which is normally motile.
A comparable model has been presented for the OmpR

effector, in which the phosphorylated and nonphosphory-
lated forms of the protein are considered to be two alterna-
tive structures, activating either the ompF or ompC target
genes (1, 13).

Further work is needed to gather biochemical data to test
the hypotheses presented in this paper.
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