






tabolite repression caused by growth on D-glucose as the car-
bon source (1) and upon exposure to high temperature or high
salt concentrations (1, 29). In agreement with these observa-
tions, E. coli cells become nonmotile at high temperature or
under high salt concentrations (23, 36). High osmolarity gave

no effect on s28 level at the both growth phases (Fig. 2D and
F), except for a slight decrease observed after 20 min of the
exponential-phase culture (Fig. 2D). Upon exposure to 428C,
however, the level of s28 started to decrease, and at 20 min, it
dropped to 28 fmol per mg of total proteins or less than half the

FIG. 2. Variation in the s38 and s28 levels under stress conditions. (A to D) Cells of E. coli W3100 were grown to the exponential phase in LB medium at 308C
(A and B) or 378C (C and D). At the cell density of 15 Klett units, the culture temperature was raised to 428C by adding an equal volume of LB prewarmed at 548C
(A and B) or the NaCl concentration was increased by adding 5 M NaCl to make the final solution 0.5 M (C and D). Samples were taken at 0, 10, 20, 30, and 60 min
after the stress treatment. Aliquots of the cell lysates containing 10-mg amounts of total proteins were analyzed by the quantitative Western blot system. Black bars
represent the control values determined using untreated cell extracts. (E and F) Cells of E. coliW3100 were grown to the stationary phase in LB medium at 378C. At
5 h after the culture dilution (about 2 h after the growth arrest), 5.0 M NaCl was added to make final 0.5 M solution. Samples were taken at 0, 10, 20, 30, and 60 min
after the addition of NaCl. Aliquots of the cell lysates containing 10 mg of total proteins were analyzed as above. Black bars represent the control values determined
using untreated cell extracts. The increase in the s38 control levels in Fig. 2C is due to the induction of s38 synthesis upon the transition into stationary growth phase.
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level of the control without heat shock (Fig. 2B). This decrease
may be due to the lack of available chaperons because the heat
shock proteins DnaK, DnaJ, and GrpE are required for tran-
scription of both the flhD master operon and the fliA operon
(37). The reduction of FlhDC, a class I transcription factor
which contacts RNA polymerase a subunit carboxy-terminal
domain (24), causes the decrease in transcription of all the
flagellar regulon genes including the rpoF gene encoding s28.
At 60 min after heat shock, the level of s28 recovered to the
steady-state level (Fig. 2B), even though cell motility was not
yet regained. The apparent conflict between the loss of motility
and the increase in s28 level may be due to accumulation of
anti-s factor. In S. typhimurium, FlgM, a negative regulator of
the flagellum-specific s factor, FliA (10, 32), can be exported
to sense the structural state of the flagellar organelle (16). The
exposure of cells to adverse conditions such as high salt con-
centrations or high temperature would inhibit the flagellar
assembly by inhibiting the export of anti-s28 factor.
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