






sium phosphate buffer, MacA was not released from it (Fig.
2B, lane 6). These observations suggest that MacA is a periph-
eral membrane protein.

Uptake of [14C]erythromycin by cells carrying pUCmacAB.
In order to determine whether or not macrolide resistance is
based on the active efflux of drugs, we compared the uptake of
[14C]erythromycin by E. coli KAM3 cells with and without the

pUCmacAB plasmid (Fig. 3). [14C]erythromycin was taken up
by the host KAM3 cells. In cells carrying pUCmacAB, uptake
was significantly inhibited, indicating active efflux of this drug
out of the cells.

DISCUSSION

In this study, we showed that the MacAB complex confers
TolC-dependent macrolide resistance via active drug efflux.
We examined the resistance pattern against 22 different drugs
and toxic compounds which contain the typical compounds
exported by multidrug transporters in bacteria and mammals.
As a result, MacAB was revealed to confer macrolide-specific
resistance. As shown in Fig. 4, MacB is a half-type ABC protein
having four putative TM segments and one nucleotide-binding
cassette. There is a large hydrophilic loop region between TM1
and TM2, which is probably located on the periplasmic surface
and may interact with MacA. MacA is a peripheral membrane
protein that belongs to the membrane fusion protein (MFP)
family (4). According to the sequence characteristics of the
signal-like sequence and the positive-inside rule of protein
topogenesis (20), most of the MacA molecule seems to be
secreted and attached on the periplasmic surface (Fig. 4).

A BLAST search revealed that there are homologues of
macAB in gram-negative organisms. Putative ABC transport-
er proteins NMA0729 (16) and NMB0548 (29) in Neisseria
meningitidis, PA2389 in Pseudomonas aeruginosa (26), and
CAB75243.1 in Campylobacter jejuni (17) exhibit sequence
identity with MacB, i.e., 48, 48, 43, and 41%, respectively. They
show sequence similarity not only in the ATP-binding domains
but also in the TM domains. In contrast, the sequence similar-

FIG. 2. Expression and localization of MacA and MacB. (A) Ex-
pression of MacA and MacB under the control of the native promoter
(pUC plasmids) and the T5 promoter (pQE plasmids) with a polyhis-
tidine tag at the N-terminal end. In the case of pQE plasmids, expres-
sion was induced with IPTG. Cells were disrupted by brief sonication,
and supernatant (S) and precipitated (membrane) (P) fractions were
obtained by ultracentrifugation after removal of cell debris by brief
low-speed centrifugation. Lanes 1, 2, and 3 were stained with CBB, and
lanes 4 and 5 were visualized by Western blotting. Lanes: 1, cells
carrying pQEmacA; 2, pQEmacB; 3, pUCmacAB; 4, pQEmacA; 5,
pQEmacB. (B) Fractionation of MacA with 4.5 M urea washing or
potassium phosphate buffer washing as a control. Lanes 1, 2, and 3
were stained with CBB, and lanes 4, 5, and 6 were visualized by West-
ern blotting. S and P indicate the supernatants and precipitates ob-
tained on ultracentrifugation, respectively. Lanes: 1 and 3, briefly son-
icated cells carrying pQEmacA; 2 and 5, after 4.5 M urea washing of
the precipitate (lane 1, P); 3 and 6, after potassium phosphate buffer
washing of the precipitate (lane 1, P).

FIG. 3. Accumulation of [14C]erythromycin in cells carrying
pUCmacAB and pUC119. Cells were incubated with 25 mM glucose
and 1.53 mg of [14C]erythromycin per ml as described in Materials and
Methods. Aliquots were then filtered through Millipore filters. After
washing of the filters, radioactivity was measured with a liquid scintil-
lation counter. Radioactivity is indicated as disintegrations per minute.
Open symbols, cells carrying pUCmacAB; closed symbols, cells carry-
ing pUC119.
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ity between MacB and putative ABC transporters such as
MsrA (24) in gram-positive organisms is restricted to the ATP-
binding cassette region. The putative ABC transporter genes in
the gram-negative organisms mentioned above include genes
for MacA homologues in the same operon. Therefore, these
genes can be classified into the same subfamily of ABC trans-
porters in gram-negative organisms.

In eukaryotes, most ABC transporters are involved in multi-
drug resistance. However, in bacteria, the majority of drug
exporters are drug-proton antiporters (8), including MFS-,
SMR-, and RND-type transporters, while ABC transporters
are usually involved in the uptake of a wide range of molecules
(6). On the basis of the results of genome analysis, a number of
putative ABC drug exporters are predicted (19), while the only
ABC multidrug exporter experimentally identified in a bacte-
rium is LmrA in Lactococcus lactis (30). In gram-positive or-
ganisms, some macrolide resistance genes code for ABC-type
efflux transporter proteins (22, 24). Among them, MsrAB in
Staphylococcus species has two nucleotide-binding domains
and probably acts as an efflux system in cooperating with some
other integral membrane proteins (10), while its characteristics
as a drug exporter have not been fully revealed. As for macro-
lide exporters, some major facilitator-type exporters are known
in gram-positive organisms (3, 28), such as MefA, which, sim-

ilarly to MacAB, confers resistance against macrolides with 14-
and 15-membered lactones.

A half-type ABC transporter is usually expected to have six
TM segments (1, 30). MacB appears to have four TM segments.
In addition, the N-terminal ABC on an ABC transporter is also
unusual. Among the ABC transporters hitherto reported, only
the ABCG subfamily in mammalian cells shows an N-terminal
ABC (7). MacB requires the MFP MacA and the outer mem-
brane channel TolC for drug efflux function. Although some
bacterial ABC transporters such as HlyB (34) accompany an
MFP and TolC, it is quite interesting that ABC-type drug efflux
transporters depend on an MFP and TolC, as seen with RND-
type multidrug efflux transporters (9, 13). In short, MacAB rep-
resents a quite unique and novel bacterial subfamily of ABC
transporters.

Very recently, Sulavik et al. (27) constructed 22 E. coli
strains with deletions of putative drug efflux transporters and
outer membrane channels. The strain with a deletion of the
macAB (ybjYZ) genes showed no change in drug susceptibility.
However, since the macAB deletion strain carried the acrAB
genes, the effect of macAB deletion might have been masked.
The tolerance of E. coli cells to macrolide antibiotics is con-
ferred mainly by AcrAB (35). Expression cloning of an indi-
vidual gene into an AcrAB-deficient strain may be necessary to
discover a potential drug efflux transporter gene.
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