Membrane Topology Mapping of the Na⁺-Pumping NADH: Quinone Oxidoreductase from Vibrio cholerae by PhoA-Green Fluorescent Protein Fusion Analysis

Ellen B. Duffy and Blanca Barquera*

Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York

Received 30 August 2006/Accepted 25 September 2006

The membrane topologies of the six subunits of Na⁺-translocating NADH:quinone oxidoreductase (Na⁺-NQR) from Vibrio cholerae were determined by a combination of topology prediction algorithms and the construction of C-terminal fusions. Fusion expression vectors contained either bacterial alkaline phosphatase (phoA) or green fluorescent protein (gfp) genes as reporters of periplasmic and cytoplasmic localization, respectively. A majority of the topology prediction algorithms did not predict any transmembrane helices for NqrA. A lack of PhoA activity when fused to the C terminus of NqrA and the observed fluorescence of the green fluorescent protein C-terminal fusion confirm that this subunit is localized to the cytoplasmic side of the membrane. Analysis of four PhoA fusions for NqrB indicates that this subunit has nine transmembrane helices and that residue T236, the binding site for flavin mononucleotide (FMN), resides in the cytoplasm. Three fusions confirm that the topology of NqrC consists of two transmembrane helices with the FMN binding site at residue T225 on the cytoplasmic side. Fusion analysis of NqrD and NqrE showed almost mirror image topologies, each consisting of six transmembrane helices; the results for NqrD and NqrE are consistent with the topologies of Escherichia coli homologs YdgQ and YdgL, respectively. The NADH, flavin adenine dinucleotide, and Fe-S center binding sites of NqrF were localized to the cytoplasm. The determination of the topologies of the subunits of Na⁺-NQR provides valuable insights into the location of cofactors and identifies targets for mutagenesis to characterize this enzyme in more detail. The finding that all the redox cofactors are localized to the cytoplasmic side of the membrane is discussed.

The Na⁺-pumping NADH:quinone oxidoreductase (Na⁺-NQR) is the main entry point for electrons into the aerobic respiratory chain of many marine and pathogenic bacteria. The enzyme oxidizes NADH, reduces quinone, and uses the free energy released in this redox reaction to generate a sodium motive force that can be used for motility and metabolic work (2, 5, 6, 8, 14, 19, 35, 43). The Na⁺-NQR complex is made up of six subunits and accommodates a number of cofactors including several flavins (flavin adenine dinucleotide [FAD], flavin mononucleotide [FMN], and riboflavin) and a 2Fe-2S cluster (3, 4, 7). Two FMNs are bound covalently to subunits B and C of the enzyme, and a noncovalently bound FAD resides in subunit F (1, 15, 28). A molecule of ubiquinone-8 is believed to be bound near Gly-141 (Vibrio cholerae numbering) of NqrB on the basis of inhibitor studies (16). NqrF includes a motif typical of NADH binding sites. This evidence together with mutant studies indicate that this subunit is the entry point of electrons into the enzyme (29, 31).

Na⁺-NQR is an integral membrane enzyme. Five of the six subunits that make up the complex (all but NqrA) apparently include membrane-spanning segments. In order to elucidate the mechanism that operates in this enzyme, it is very important to know where a given point in the amino acid sequence is situated with respect to the membrane, whether it is on the cytoplasmic side, within the membrane itself, or on the periplasmic side. Topological information of this kind for the subunits NqrB, NqrC, and NqrF is important to elucidate where, in relation to the membrane plane, the different cofactors are located, particularly the covalently bound FMNs in subunits B and C. This information is essential for studying the mechanism that couples the redox reaction of Na⁺-NQR with the pumping of sodium. To function correctly, an ion pump must move ions across the membrane in a specific direction. In Na⁺-NQR, sodium ions are taken up from the cytoplasmic side of the membrane and are released on the extracellular side, resulting in the outer side of the cell membrane becoming positively charged with respect to the inner side. The directional (vectorial) nature of the ion-pumping process must be linked to an oriented placement of the protein with respect to the sides of the membrane. The localization of the redox cofactors and other putative pump-related sites with respect to the sides of the membrane is important for understanding the pump mechanism because it can reveal whether the work involved in moving Na⁺ up the membrane potential gradient is done during Na⁺ uptake or release. Furthermore, topological models of subunits NqrB, NqrD, and NqrE can help to identify conserved amino acid residues located within the membrane-spanning regions that are likely to be involved in sodium pathways.

Computer prediction programs can be used to generate topological maps of membrane proteins. We employed Web-based topology prediction algorithms to create a set of seven models for each subunit. The predictions generated in this way disagree in important respects. Importantly, the prediction of
membrane-spanning helices is more accurate than predictions of absolute sidedness, i.e., whether the N terminus is on the cytosolic or periplasmic side. These discrepancies can often be resolved by studying fusions of reporters to the C termini of full-length or truncated membrane proteins. Typically, a reporter that is active only on one side of the membrane, in contrast to what is seen in many other ion pumps.

By using reporter group gene fusion methods to resolve the discrepancies among topology modeling predictions, we were able to arrive at a single consensus model for each subunit of Na+-NOR (12, 18). This topological model will be useful for future mechanistic studies because each of the redox cofactors for which the amino acid binding site is known can now be localized with respect to membrane sidedness. Interestingly, all of the localized cofactors are found on the cytoplasmic (negative) side of the membrane, in contrast to what is seen in other ion pumps.

MATERIALS AND METHODS

Bacterial strains, plasmids, and primers. Strains and plasmids used in this study are listed in Table 1. Primers were synthesized by either IDT, Inc., or Operon and were high-pressure liquid chromatography purified. Primers included appropriate restriction cleavage sites to allow the insertion of the PCR products into the pBAD vectors (KpnI for pBAD-PhoA and NdeI or SpeI [NqrD] for pBAD-GFP).

Membrane topology prediction methods. Seven current Web version topology prediction algorithms were utilized: TMHMM (27), MEMSAT3 (24), TOPPRED II (10), TMPred (http://www.ch.embnet.org/software/TMPRED_form.html), HMMTOP 2.0 (37), DAS (11), and SOUSI (17). Primary amino acid sequences of each subunit were individually submitted, and default options were used. A summary of the predictions for each of the six subunits of Na+-NQR is shown in Table 2. C-terminal fusions were then made to discriminate absolute sidedness, i.e., whether the N terminus is on the cytosolic or periplasmic side. These discrepancies can often be resolved by studying fusions of reporters to the C termini of full-length or truncated membrane proteins. Typically, a reporter that is active only on one side of the membrane, in contrast to what is seen in many other ion pumps.

TABLE 1. Strains and plasmids used in this study

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Genotype or description</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli Top10</td>
<td>F− mcrA Δ(nrr-hsdRMS-mcrBC) Δ(ntrZ)ΔM15 ΔlacX74 recA1 araD139Δ(ara-leu)7697 galU galK rpsL (Strr) endA1 nupG</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>E. coli LMG194</td>
<td>F− ΔlacX74 galE thi rpsL ΔphoA (PvuII) Δara714 leu::Tn10</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>V. cholerae O395N1</td>
<td>Wild type, Smr</td>
<td>25</td>
</tr>
<tr>
<td>V. cholerae O395N1 Δnqr</td>
<td>Smr Δnqr</td>
<td>Unpublished results</td>
</tr>
</tbody>
</table>

Plasmids

- pBAD-PhoA
- pBAD-GFP
- AANC
- ABN240
- ABN255
- ABN377
- ABNC
- ACN90
- ACN180
- ACNC
- ADN110
- ADN125
- ADNC
- AENC
- AFN80
- AFN160
- AFNC
- GANC
- GCN90
- GCN180
- GCNC
- GDN125
- GDN125+L
- GNC
- GDNC
- GDNC+L
- GENC

The use of GFP in V. cholerae was used. The use of GFP in E. coli is well established, but to our knowledge, this is the first time that GFP fusions have been used in V. cholerae. In several cases, this was successful, but some of the GFP fusion products were apparently toxic to the cells.

By using reporter group gene fusion methods to resolve the discrepancies among topology modeling predictions, we were able to arrive at a single consensus model for each subunit of Na+-NOR (12, 18). This topological model will be useful for future mechanistic studies because each of the redox cofactors for which the amino acid binding site is known can now be localized with respect to membrane sidedness. Interestingly, all of the localized cofactors are found on the cytoplasmic (negative) side of the membrane, in contrast to what is seen in many other ion pumps.
TABLE 2. Membrane topology predictions among seven Web-based algorithms for each of the six subunits of Na⁺-NQR

<table>
<thead>
<tr>
<th>Subunit</th>
<th>Membrane topology algorithm</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>NqrA</td>
<td>TMHMMix</td>
<td>0P 1C 0P</td>
</tr>
<tr>
<td>NqrB</td>
<td>MEMSAT3</td>
<td>0P 1C 2P</td>
</tr>
<tr>
<td>NqrC</td>
<td>TopPred</td>
<td>1P 1P 2C</td>
</tr>
<tr>
<td>NqrD</td>
<td>HMMTOP</td>
<td>5P 6C 5P</td>
</tr>
<tr>
<td>NqrE</td>
<td>DAMS</td>
<td>6P 6P 6P</td>
</tr>
<tr>
<td>NqrF</td>
<td>SOUSI</td>
<td>2P 2P 2P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fusion</th>
<th>Alkaline phosphatase activity</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>AANC</td>
<td>−0.14</td>
<td>C</td>
</tr>
<tr>
<td>ABN240</td>
<td>33</td>
<td>C</td>
</tr>
<tr>
<td>ABN255</td>
<td>24</td>
<td>C</td>
</tr>
<tr>
<td>ABN377</td>
<td>390</td>
<td>P</td>
</tr>
<tr>
<td>ABNC</td>
<td>7.4</td>
<td>C</td>
</tr>
<tr>
<td>ACN90</td>
<td>20</td>
<td>C</td>
</tr>
<tr>
<td>ACN180</td>
<td>0.2</td>
<td>C</td>
</tr>
<tr>
<td>ACNC</td>
<td>630</td>
<td>P</td>
</tr>
<tr>
<td>ADN110</td>
<td>20</td>
<td>C</td>
</tr>
<tr>
<td>ADN125</td>
<td>1.4</td>
<td>C</td>
</tr>
<tr>
<td>ADNC</td>
<td>9.5</td>
<td>C</td>
</tr>
<tr>
<td>AENC</td>
<td>400</td>
<td>P</td>
</tr>
<tr>
<td>AFN80</td>
<td>230</td>
<td>C</td>
</tr>
<tr>
<td>AFN160</td>
<td>6.2</td>
<td>C</td>
</tr>
<tr>
<td>AFNC</td>
<td>6.0</td>
<td>C</td>
</tr>
</tbody>
</table>

a Values indicate predicted numbers of transmembrane helices, and the P or C denotes the predicted periplasmic or cytoplasmic C-terminal location, respectively.

Molecular genetic techniques. *V. cholerae* O395N1 genomic DNA was used as a source of the nqr operon. Genomic DNA was extracted from a culture of *V. cholerae* grown overnight by using the Wizard purification kit (Promega) according to the manufacturer’s instructions. Full-length or partial fragments of individual subunits of Na⁺-NQR were amplified by PCR using high-fidelity polymerase (Platinum SuperMix High Fidelity; Invitrogen) and subjected to agarose gel electrophoresis, and single bands of the correct size were purified from the agarose (MinElute or Qiagen gel extraction kit; QIAGEN). Fragments were first cloned into pCR2.1 TOPO TA vectors (Invitrogen) and transformed into *E. coli* Top10 cells (Invitrogen). Cloned PCR fragments were excised from the pCR2.1 TOPO TA vector with the appropriate restriction enzymes (New England Biolabs [NEB]). The resulting restriction enzyme digestion products were purified from agarose gels. Fusion expression vectors were digested with the corresponding restriction enzymes and dephosphorylated with Antarctic phosphatase (NEB), which subsequently heat inactivated (65°C for 15 min). Vectors and fragments were ligated using T4 ligase (NEB or Invitrogen) overnight at 16°C. The resulting plasmids were transformed into *E. coli* Top10 cells, and the orientation of the insert was checked by restriction enzyme digestion. Plasmids with the correct orientation relative to the reporter gene were transformed by electroporation (Bio-Rad) into *E. coli* LMG194 for PhoA fusions and *V. cholerae* O395N1 or *V. cholerae* Δnqr for GFP fusions.

For GDNC and GDN125, an 18-amino-acid linker was inserted in frame between the nqr gene fragment and the GFP gene (40) using a mutagenesis kit (Quickchange; Stratagene). Fusions for GDNC and GDN125 without the linker were also constructed.

Reporter gene assays. Cultures of strains containing pBAD-PhoA/GFP fusions grown overnight were reincubated into 50-ml cultures of Luria broth (Miller) with antibiotics (100 μg/ml ampicillin and, in the case of *V. cholerae*, 50 μg/ml streptomycin) and allowed to grow to early log phase before the addition of 1-(tetrabutylammonium) (Sigma) to a final concentration of 0.2% to induce expression. Growth was allowed to continue, and at late log phase, cells were harvested for analysis of PhoA or GFP activity (see below). At the same time, a 1-ml aliquot of culture was removed for sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and Western blot analysis. These cells were harvested by centrifugation, and the cell pellets were stored at −20°C until use.

A quantitative assay of alkaline phosphatase activity was conducted using a method described previously (21). After growth of cultures as described above, a 5-ml aliquot of culture was removed, 50 μl of 100 mM iodoacetamide (Sigma) was added, and the cells were incubated for 10 min at 37°C. Cells were then harvested by centrifugation, washed once with 5 ml cold PhoA buffer (10 mM Tris, pH 8.0, 10 mM MgSO₄, 1 mM iodoacetamide), and resuspended in 1 ml 1 M Tris (pH 8.0)–1 mM iodoacetamide. The cell density was measured by the absorbance at 600 nm using an Agilent spectrophotometer (model 8453). PhoA activity was measured in cells permeabilized with SDS and chloroform, and incubated for 45 min at 37°C with p-nitrophenyl phosphate (pNPP) as a substrate. Absorances at 420 nm and 550 nm were measured and used to calculate activity using the equation described previously by Manoil (21).

Expression and analysis of fusions. For SDS-PAGE, thawed cell pellets were added to 100 μl of 2× sample loading buffer and incubated in a boiling water bath for 10 min. Denatured samples (10 μl) were loaded into a 4 to 12% Tris-Bis acrylamide gel (Invitrogen). Following electrophoresis, the gel was first photographed under UV illumination to detect the presence of fluorescent cofactors, and proteins were then transferred onto a polyvinylidene difluoride membrane. Western immunoblotting was performed on the polyvinylidene difluoride membranes according to the protocol for the Western Breeze kit (Invitrogen). The primary antibody was either mouse anti-alkaline phosphatase or mouse anti-GFP (Chemicon).

Membrane isolation. The PhoA fusions ABNC and ACNC in *V. cholerae* Δnqr were grown in LB medium (with the appropriate antibiotics) to the beginning of early log phase, at which point arabinose was added to a final concentration of 0.2%. The cultures were allowed to grow to the beginning of stationary phase and then harvested. Cells were washed with a solution containing 10 mM Tris buffer, pH 8, 200 mM NaCl, and 5 mM MgSO₄. Cells were broken using a microfluidizer (model 110S; Microfluidics) in the presence of DNase I (Sigma) and the protease inhibitor AEBISF-42-aminoethylbenzenesulfonyl fluoride). Cell debris and unbroken cells were removed by centrifugation at 3,500 × *g* for 30 min. The supernatant containing the membrane fraction was then centrifuged at 100,000 × *g* for 12 h. The resulting pellet was resuspended in the Tris buffer using a glass-Teflon homogenizer, and membrane aliquots were frozen at −80°C until needed.

Protein concentration of the membrane fractions was determined by using the BCA method (Pierce).

RESULTS

Cloning and expression. For all six subunits, full-length C-terminal fusions with PhoA were constructed. In addition,
truncated C-terminal fusions with PhoA were constructed for NqrB, NqrC, NqrD, and NqrF. No truncated C-terminal fusions were constructed for NqrA and NqrE because topology prediction algorithms were in near agreement and could be discriminated based on the full-length fusion. A select set of fusions with GFP were constructed to provide confirmation of PhoA results. C-terminal fusions of full-length NqrA, NqrC, NqrD, and NqrE to GFP were constructed.

All PhoA fusions were expressed upon the addition of arabinose. Several GFP fusions, particularly the NqrD fusions, showed inhibition of growth upon the addition of arabinose while still showing limited levels of expression (not shown).

PhoA fusion analysis. The activities of PhoA fusions are reported in Table 3. Based on the PhoA activity of *E. coli* LMG194 cells (typically observed to be between 0 and 20 units), a threshold of 40 units (a unit is the amount of substrate, pNPP, hydrolyzed per minute per optical density at 600 nm) was set for positive activity; high PhoA activity was defined as >100 units. The full-length NqrA fusion showed no PhoA activity, indicating a cytoplasmic location of the C terminus. Full-length fusions of NqrC and NqrE to PhoA yielded high PhoA activity. Only two of nine truncated fusions showed positive PhoA activity: ABN377 and AFN80.

GFP fusion analysis. Observation of GFP activity in *V. cholerae* wild-type and Δnqr strains confirmed the ability of GFP to serve as a reporter of cytoplasmic localization (Fig. 1). Full-length C-terminal GFP fusions for NqrC and NqrE did not fluoresce under UV illumination, strengthening the conclusions from the PhoA analysis, which show that the C termini of NqrC and NqrE both lie on the periplasmic side of the membrane (Fig. 2 and 3). The full-length C-terminal GFP fusion for NqrA fluoresced under UV illumination, again confirming the results with the PhoA fusions and showing that the C terminus of this subunit lies on the cytoplasmic side of the membrane (Fig. 1C and D). Two GFP fusions with NqrD (GDN125 and GDNC) where the reporter group is expected to be in the cytoplasm, and therefore fluorescent, showed only low levels of fluorescence under the microscope (Fig. 1E and F). This is consistent with the fact that the addition of an inducer (arabinose) to these cells led to the inhibition of growth and low levels of expression as judged by Western blot analyses (not shown).

Topology of Na⁺-NQR. The topologies of the six subunits of Na⁺-NQR from *V. cholerae* were determined through a combination of topology prediction algorithms and gene fusion analysis. Topology prediction algorithms and rules for generating a consensus model were useful in reducing the total number of fusions to construct. C-terminal full-length and truncated fusions to PhoA were constructed and analyzed, yielding data that were used to model the topologies of the six subunits. Fusions with GFP were used to confirm a subset of the PhoA fusions.

The results of both the PhoA and GFP fusions with full-length NqrA are in agreement with a cytoplasmic location of this subunit. No transmembrane helices were predicted by the

Fig. 1. Epifluorescent micrograph of GFP fusions. (A) *E. coli* pBAD-GFP. (B) Wild-type *V. cholerae* pBAD-GFP. (C) GFP fusion to the complete nqrA gene (GANC) in *E. coli* Top10 cells. (D) GANC in wild-type *V. cholerae*. (E) GFP fusion to nqrD from the N terminus to amino acid 125 (GDN125) in *V. cholerae* Δnqr. (F) GFP fusion to the complete nqrD gene plus a linker (GDNC+L) in *V. cholerae* Δnqr. The scale bar in panel B applies to all panels.

Fig. 2. Membrane topology model of NqrC. The FMN binding site at residue T225 is shown. C-terminal fusion sites are indicated in the figure using the codes shown in Table 1.
The topologies of homologues of NqrD and NqrE (YdgQ and YdgL, respectively) in E. coli have been previously determined and consist of six transmembrane helices each but with opposite overall orientations (YdgQ has its N and C termini in the cytoplasm, while YdgL has its N and C termini in the membrane). The PhoA activity results for NqrB are consistent with the topology model shown in Fig. 3. NqrB has nine transmembrane helices containing seven negatively charged residues that could be involved in sodium translocation. All of these residues are conserved across the Na⁺-NQR sequences of several organisms (Fig. 3). Analysis of the NqrB subunit also showed that the putative quinone binding site, G141 (G140 in Vibrio alginolyticus) (16), is localized to the cytoplasmic half of transmembrane helix III. The FMN binding site at residue T236 was localized to the cytoplasmic loop between transmembrane helices V and VI.

The PhoA fusion constructs also provided evidence that the FMN cofactors of NqrB and NqrC are incorporated, even when the remaining subunits of Na⁺-NQR are not present. When the membrane fraction from V. cholerae (Δnqr) containing the complete NqrB subunit fused to alkaline phosphatase (ABNC fusion) was run on an SDS-PAGE gel (Fig. 4), a fluorescent band was observed at the predicted molecular mass for the fusion protein (~80 kDa), indicating the presence of the FMN. Similarly, the PhoA fusion for NqrC (ACNC fusion) also gave a fluorescent band at the predicted molecular mass for the fusion protein (~70 kDa), indicating that the FMN in the subunit is also bound (Fig. 4). Since the SDS-PAGE gels denature the protein, these results also indicate that the flavins in these two subunits are already covalently bound.

FIG. 3. Membrane topology model of NqrB. Conserved negatively charged residues located in the membrane spans are represented as black squares. The FMN binding site at residue T236 and a predicted quinone binding site at residue G141 are shown. C-terminal fusion sites are indicated in the figure using the codes shown in Table 1.
periplasm) (33). Our results are in agreement with the topologies of these homologues (Fig. 5 and 6). While the consensus model for NqrD had five transmembrane helices, three of the seven predictions included a sixth transmembrane helix at the N terminus. Our method of constructing fusions (via PCR and subcloning into the fusion vector) was unable to generate a fusion construct to test for the presence of this initial helix. However, analysis of the primary sequence in conjunction with the “positive-inside” rule (39) suggest that the N terminus is located in the cytoplasm, which would indicate that the initial helix exists. Both subunits contain negatively charged amino acids within their six transmembrane helices, and several of these residues are conserved.

The fusion activity results indicated that the topology of NqrC consists of two transmembrane helices with the FMN binding site, residue T225, residing in the cytoplasm (Fig. 2). Fusion activity results for NqrF indicate a cytoplasmic localization of the cofactor binding regions (Fig. 7). A single transmembrane helix is most likely for NqrF, despite the two helices predicted in the consensus. All five topology algorithms that predicted a second transmembrane helix scored this helix as having a low probability of formation. Assuming that a single-helix...
topology is correct, an explanation of the positive PhoA activity for AFN80 is that the weakly hydrophobic region (the second predicted helix, indicated by white squares in Fig. 7) and the lack of a strong positively charged region preceding the fusion site lead to the translocation of the PhoA moiety to the periplasm, resulting in the observed activity. However, the existence of this second predicted helix is unlikely, since this two-helix model would locate one of the four cysteines that ligate the 2Fe-2S in the middle of membrane span. In addition, Turk et al. (36) were previously able to produce a soluble variant of NqrF by removing residues threonine 3 to alanine 25, consistent with this stretch of the protein being the membrane anchor.

DISCUSSION

Protein reporter group fusions are a well-established and proven method of studying the topology of membrane proteins (12, 22). Using this method, a marker is attached at a specific point in the amino acid sequence of a membrane protein so as to reveal the location of that point with respect to the membrane. This is accomplished by making a fusion on the gene level. The gene for the membrane protein is truncated at a point of interest, and the gene for a “reporter group” protein is spliced in. The objective is that when the modified gene is expressed, the remaining part of the membrane protein will be inserted into the membrane in the normal fashion, guiding the reporter group to one side of the membrane or the other, depending on where the membrane protein was truncated. A reporter group must be a protein that exhibits different properties depending on whether it resides in the cytosol or the periplasmic space. To be useful, the properties of the reporter group must manifest themselves in whole cells. We have used two reporter proteins in this study: GFP as the cytoplasmic reporter (12, 13) in both *E. coli* and *V. cholerae* (34) and PhoA (26) as the periplasmic reporter in a PhoA-deficient strain of *E. coli*.

Using a combination of computer-based topology predictions and gene fusion studies, we have obtained a consensus model for each of the six subunits of the Na⁺-NQR complex from *V. cholerae*. For each subunit, at least one fusion was made, providing an experimental point of reference to establish sidedness for the computer predictions. In several cases,
exception of riboflavin, whose location in the protein has not been established. This topological placement is analogous to that of the H^+-pumping NADH:quinone oxidoreductase (complex I) but contrasts with those of some other redox-driven ion pumps. These differences almost certainly reflect important aspects of the ion-pumping mechanism (9, 23, 32).

In the case of cytochrome c oxidase, a proton pump, the redox cofactors all lie to the positive side of the membrane, that is, toward the side where positively charged ions are ejected. The binuclear oxygen-reducing site, which is believed to play an important role in proton pumping, is located near the electrical center of the membrane (Fig. 8). For protons to reach the binuclear center, they must cross a fraction of the membrane, and therefore, a significant part of the work of ion translocation is done during proton uptake (41, 42). In Na^{+}-NQR, with the redox cofactors near the negative side of the membrane, if we assume that there is a discrete binding site for sodium pumping associated with a redox cofactor, most of the electric work of ion translocation would need to be done during sodium release. We hope to study this question further by biophysical methods.

The results reported in this paper will help to guide future structure-function studies of Na^{+}-NQR. They will be of particular importance for investigations of the chemiosmotic properties of this redox-driven Na^{+} pump, where it is essential to know the locations of cofactors and amino acid residues with respect to the membrane dielectric.

ACKNOWLEDGMENTS

This study was funded by NIH grant R01 GM069936 to B.B. We greatly appreciate the help, support, and critical reading of the manuscript of Joel Morgan. We thank Fern Finger and Christine Morton for use of and assistance with the epifluorescence microscope. We are grateful to Chengyen Wu for his skillful assistance in the preparation of the nqr deletion strain. We also thank Nadia Dolganov and Gary Schoolnik at Stanford University for their help in the preparation of strains.

REFERENCES

