Molecular Analysis of Genes in *Nostoc punctiforme* Involved in Pilus Biogenesis and Plant Infection

Paula S. Duggan, Priscila Gottardello,† and David G. Adams*

Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom

Received 21 December 2006/Accepted 30 March 2007

Hormogonia are the infective agents in many cyanobacterium-plant symbioses. Pilus-like appendages are expressed on the hormogonium surface, and mutations in *pil*-like genes altered surface piliation and reduced symbiotic competency. This is the first molecular evidence that pilus biogenesis in a filamentous cyanobacterium requires a type IV pilus system.

Cyanobacteria, such as *Nostoc* spp., differentiate specialized filaments, known as hormogonia, which serve as the infective units in the establishment of symbioses with plants (1, 31) and exhibit a surface-dependent form of motility known as gliding. Social gliding of myxobacteria (30) and the twitching motility observed in a wide range of gram-negative bacteria, including the unicellular cyanobacterium *Synechocystis* sp. strain PCC 6803 (7, 9, 48, 63), are associated with surface-expressed, retractile appendages known as type IV pili (Tfp). While there is evidence that hormogonia possess pilus-like structures that are expressed during their formation (14) and transcripts hybridizing to the pilus retraction gene, *pilT*, increase in abundance within the first few hours of hormogonium formation (16), direct evidence that these structures underlie their motility is still lacking. Similarly, questions remain over the contribution of pili to establishment of cyanobacterium-plant symbioses. Dick and Stewart (15) noted that pilus-like structures were important in the specificity of the *Nostoc-Peltigera* symbioses, but Johansson and Bergman (20) noted that they appeared to be of little significance in the establishment of *Nostoc-Gunnera* symbioses.

Now that the genome sequence for *Nostoc punctiforme* ATCC 29133 (PCC 73102) is available (http://genome.jgi-psf.org/finished_microbes/nosp/nosp.home.html), it is clear that it contains open reading frames (ORFs) that are predicted to encode proteins with similarity to Tfp biogenesis proteins. To address the possibility that hormogonia require a Tfp system, we inactivated six of the *pil*-like ORFs and examined the mutant phenotypes.

Identification of *N. punctiforme* *pil*-like genes. Of 15 ORFs identified (Table 1), 6 were chosen for disruption analysis. The predicted amino acid sequence of the protein encoded by the *pilT*-like ORF NpR0117 is most similar (75% identity; 88% similarity) to PilT1 from *Synechocystis* (74% identity; 86% similarity). Both PilT-like proteins possess the conserved Walker box motifs characteristic of nucleotide binding proteins (Fig. 1). Walker box A, in ATP/GTP-binding consensus sequence, [AG]-X3-G-K-[ST], where X is a variable (PROSITE accession no. PDOC00017), is glycine rich (54, 57). Walker box B is also present in some of the bacterial type II secretion pathway (GSP) proteins (40, 54). The NpF2507 protein has a proline-rich N-terminal extension of about 74 amino acids that is also present in PilT2 of *Synechocystis* strain PCC 6803 (7). *pilT*-like NpR0117 is clustered with two other *Nostoc pil*-like genes *pilB* (NpR0118) and *pilC* (NpR0116), in the order *pilB*, *pilT*, and *pilC*. In *Synechocystis* strain PCC 6803, *pilC* is clustered with *pilT* but not with a *pilB* homologue (63), while *pilC* is downstream of *pilB*, and *pilT* is found at a different locus in *P. aeruginosa* (29).

The NpR2800 protein resembles prepilin peptidases (PiD proteins), which process pilin and a number of other prepilin-like proteins (3, 38) (data not shown). NpR2800 shares most sequence similarity (48%; 63% identity) with the *Synechocystis* strain PCC 6803 prepilin peptidase (Slr1120) and contains at least six transmembrane helices, suggesting that the protein may be an integral membrane protein. The highly conserved two-pair cysteine signature, which is required for both proteolysis and methylation activities (25), is also present (data not shown).

The *N. punctiforme* genome has at least five ORFs encoding proteins containing features that characterize the pilus subunit (PiIA), a unique leader peptide sequence, and high sequence conservation in the N-terminal region of the mature protein (data not shown). Other significant similarities include conserved Gly residue at position −1 that is essential for cleavage of the leader sequence, a conserved Phe (+1 position of the mature protein) and a Gln residue (+5 position of the mature protein). It is worth noting that pseudopilins, which are components of the GSP (18, 21, 37, 45, 51), are also synthesized as precursors and share extensive sequence similarity with PiIA (18, 25).

Mutants were constructed by the insertion of an omega

* Corresponding author. Mailing address: Institute of Integrative and Comparative Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom. Phone: 44(0)113 3435588. Fax: 44(0)113 3434311. E-mail: d.g.adams@leeds.ac.uk.

† Present address: The Institute of Pharmaceutical Innovation, University of Bradford, Bradford, BD7 1DP, United Kingdom.

‡ Published ahead of print on 6 April 2007.
neomycin phosphotransferase gene into each ORF and the introduction of inactivated alleles into wild-type *N. punctiforme* as described previously (13). Complete segregation was achieved with all the mutants, except pilA-like ORFs NpF0068 and NpF0676.

Pilus structure on the cell surface of hormogonia. In agreement with previous observations (15, 20, 53), the surface of wild-type *N. punctiforme* hormogonia possesses peritrichously arranged pilus-like structures (Fig. 2B). Individually, these structures have a fairly uniform diameter of 7 to 10 nm, whereas the length is variable, extending up to 10 μm from the cell surface. We were able to discern only one *Nostoc* pilus morphotype, whereas others have determined that *Synechocystis* strain PCC 6803 has two morphologically distinct pilus types (7, 63). By contrast, the vegetative trichomes of the immotile parent filaments are largely devoid of pili (Fig. 2A). The pili of the pilA-like NpF0069 mutant were, in terms of abundance,
in that it implies that both of its pilus morphotypes are processed by the same prepilin peptidase (7). Searches of the N. punctiforme genomic sequences did not reveal any other PilD-like prepilin peptidases. The possibility of functional homologs, however, cannot be excluded. The truncated pilus phenotype reported here is unusual and may represent partially retracted or partially extended pili.

Symbiotic competencies of wild-type and mutant N. punctiforme strains. The importance of cyanobacteria in their associations with plants is evidenced by the fact that host plants synthesize hormogonium-inducing factors (4, 10, 12, 22, 46, 55) and that both natural host plants and nonhost plants induce chemotactic behavior in hormogonia (22, 34, 55). There is evidence, however, that hormogonium production per se is not sufficient for the establishment of symbiosis, because Johansson and Bergman (20) noted that noninfective Nostoc strains were also capable of forming motile hormogonia in the presence of the angiosperm Giuncera spp. (see also references 17 and 46). Fast hormogonium formation and rapid migration of these filaments appear critical to the successful establishment of artificial associations (33). Several factors therefore contribute to symbiotic competency. Tfp also function in adhesion (44). Indeed, adhesion, rather than motility, has been shown to be necessary for the initiation of biofilm formation in P. aeruginosa (11). Our wild-type hormogonia glided at rates of 0.7 µm s⁻¹ to 1.7 µm s⁻¹ (although it should be noted that motility was not always present in the wild type). Slight twitching of filaments, without forward progression, was detected by light microscopy in the NpF0069 and NpF2507 mutants. Motility in strains with NpR2800 and NpR0117 inactivated was not observed. To investigate the importance of functional pili in the establishment of symbiosis, the frequency of infection was estimated after coculture with the host bryophyte Blasia pusilla (Table 2) (22). Reconstitution of symbiotic associations was performed as described previously (60).

The wild-type-piliation phenotype observed with the pilA-like NpF0069 mutant implies that the gene is not required for the biosynthesis of the pilus-like appendages. It was therefore surprising that the NpF0069 mutant infected plant tissue at frequencies lower than those of the wild type, both during the early stages of the infection process and after a protracted process of infection (Table 2) (22). Reconstitution of symbiotic associations was performed as described previously (60).

FIG. 3. Presence of pilus-like appendages on the cell surface of hormogonia produced by pil mutants of N. punctiforme. (A) Hormogonia of the NpR2800 mutant (pilD homologue); (B) hormogonia of the NpF2807 mutant (pilT homologue); (C) hormogonia of the NpR0117 mutant (pilT homologue). Scale bars represent 1 µm. At least 50 filaments were observed for each mutant phenotype, and the electron micrographs shown are representative of each strain.

TABLE 2. Mean infection frequencies of wild-type and mutant strains of N. punctiforme estimated after 14 and 28 days of coculture with Blasia.

<table>
<thead>
<tr>
<th>N. punctiforme strain (putative homologue)</th>
<th>14 days</th>
<th>28 days</th>
<th>14 days</th>
<th>28 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. punctiforme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild-type N. punctiforme pilD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NpF0069 mutant (pilA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NpF2507 mutant (pilT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NpR2800 mutant (pilD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NpR0117 mutant (pilT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of coculture replicates</th>
<th>Infection frequency (%)</th>
<th>Mean SD</th>
<th>No. of coculture replicates</th>
<th>Infection frequency (%)</th>
<th>Mean SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>NpF0069 mutant (pilA)</td>
<td>25</td>
<td>12.03</td>
<td>7.8</td>
<td>8</td>
<td>12.57</td>
</tr>
<tr>
<td>NpF2507 mutant (pilT)</td>
<td>23</td>
<td>6.00</td>
<td>4.35</td>
<td>8</td>
<td>14.13</td>
</tr>
<tr>
<td>NpR2800 mutant (pilD)</td>
<td>20</td>
<td>0.68</td>
<td>0.4</td>
<td>8</td>
<td>0.39</td>
</tr>
<tr>
<td>NpR0117 mutant (pilT)</td>
<td>17</td>
<td>0.48</td>
<td>0.56</td>
<td>8</td>
<td>1.52</td>
</tr>
</tbody>
</table>

* The putative homologue of each ORF is indicated in parentheses.

* Values are expressed as the mean number of infected auricles (the symbiotic cavities of Blasia) expressed as a percentage of the total number of auricles counted for each determination (a minimum of 400 auricles were counted for each determination).
period of coculture (Table 2). Some mutations in the *P. aeruginosa* pilA gene give rise to strains that are capable of assembling surface pili but have impaired motility and adherence (reviewed in reference 9). Further work is therefore required to fully discount the possibility that NpF0069 encodes the *Nostoc* pilin monomer. Alternatively, the protein encoded by pilA-like NpF0069 may represent a minor pilin (2, 58) that may support the activity of the major pilin in some aspect of motility and/or adhesion and therefore contribute to symbiotic competency. *Synechocystis* strain PCC 6803 has at least 10 pilA-like genes (5, 7, 62, 63), some of which are critical for motility and therefore probably represent components of the Tfp machinery.

For the pilD-like NpR2800 mutant, the frequency of infection after 14 days was 0.68%, decreasing to 0.31% after 28 days. Many of the symbiotic filaments were brown, implying that they were dead or dying and that the mutant was unable to grow effectively once it had reached the host symbiotic cavity. It is well established that preplin peptidases, as well as processing pilin precursor, are also involved in the extracellular secretion of proteins (23, 24, 41, 50). pilD mutants are therefore pleiotropic. Indeed, there is evidence to suggest that the *Synechocystis* strain PCC 6803 pilD gene is also critical for normal growth (63). The death of symbiotically associated *Nostoc* NpR2800 filaments opens the intriguing possibility that the *Nostoc* pilD-like gene may be required for some aspect of symbiotic growth.

Because wild-type hormogonia were occasionally immotile, we were unable to demonstrate irrefutably that the apparent loss of motility associated with the NpR0117 mutant resulted from mutation in the pilD-like ORF. Questions therefore remain as to whether motility, adhesion, or both function in the establishment of symbioses. Nevertheless, the NpR0117 (hyperpiliated) mutant infected *Blasia* tissue at a considerably lower frequency than the wild type (Table 2), implying that normal surface piliation is required for effective establishment of symbioses. Both *N. punctiforme* PilT-like proteins resemble other PilT proteins and share sequence homology with components of the GSP found in gram-negative bacteria (37, 43). Both proteins, however, lack the tetracysteine motif that is characteristic of GSP members and is also found in the DNA competence PilF protein (56) and the Tfp biogenesis protein PilB (35), indicating that the *Nostoc* PilT-like proteins can be included in the PilT family. Because the NpR0117 product resembles other PilT proteins and inactivation of the gene resulted in a hyperpiliated strain with a reduced capacity for infection, we suggest that NpR0117 at least is a component of the *Nostoc* pilation system and encodes the functional homologue of the pilus retraction protein PilT. The role of pilT-like NpF2507 is less clear. The NpF2507 protein mostly resembles PilT2 from *Synechocystis* strain PCC 6803, which is dispensable for motility but is believed to function in a signaling pathway that regulates the positive phototaxis of this cyanobacterium (7). The NpF2507 mutant infected *Blasia* tissue at an initial frequency 50% that of the wild type but reached a level equivalent to that of the wild type after 28 days (Table 2), implying a possible role during the early stages of the infection process. Whether NpF2507 is required for the direction of hormogonia motility (possibly involving chemotaxis-like regulatory elements), as may be the case with *Synechocystis* PilT2, remains to be investigated. Surprisingly, many of the plant structures that host cyanobacterial colonies are in regions that receive little or no light, suggesting that the chemoattractants released by the host plant override the elements that regulate phototactic behavior.

In conclusion, we report that *N. punctiforme* has a type IV piliation system and that inactivation of the pilT- and pilD-like components (NpR0117 and NpR2800, respectively) specifically altered the surface piliation levels and reduced symbiotic competency. We speculate that hormogonia motility is driven by type IV pili and that these structures contribute to the establishment of *Nostoc-Blasia* symbioses.

The financial support of BBSRC (grant 24/C14515) is gratefully acknowledged. We also thank Adrian Hick for electron microscopy.

REFERENCES

4550 NOTES J. BACTERIOL.