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The Escherichia coli multidrug efflux pump protein AcrB has recently been cocrystallized with various
substrates, suggesting that there is a phenylalanine-rich binding site around F178 and F615. We found that
F610A was the point mutation that had the most significant impact on substrate MICs, while other targeted
mutations, including conversion of phenylalanines 136, 178, 615, 617, and 628 to alanine, had smaller and more

variable effects.

The Escherichia coli AcrB multidrug efflux pump is a mem-
ber of the resistance-nodulation-division (RND) family and
recognizes many chemically unrelated compounds, including
various dyes and antibiotics (10, 11). AcrB cooperates with the
membrane fusion protein AcrA and the TolC outer membrane
protein.

While previous crystallographic studies with crystals grown
in trigonal space group R32 described a symmetric AcrB tri-
mer, recent studies of structures derived from monoclinic crys-
tals described an asymmetric trimer in which each protomer
was suggested to correspond to a distinct functional state of a
proposed three-step transport cycle reminiscent of a peristaltic
pump (9, 12, 13). In this model, the protomer in its binding or
tight-state conformation forms a hydrophobic pocket defined
by phenylalanines 136, 178, 610, 615, 617, and 628.

Analysis of doxorubicin- and minocycline-complexed AcrB
crystals suggested that these two compounds interact with dif-
ferent residues of the binding protomer. Minocycline seemed
to interact with F178, N274, and F615, while doxorubicin
seemed to interact with Q176, F615 and F617 (9). Thus, it was
proposed that the extremely broad substrate spectrum of AcrB
could be explained by the flexible interaction of various ligands
mostly with hydrophobic phenylalanines and to a minor degree
with polar residues in the binding pocket.

Support for this model also came from several mutational
studies which found that substrate specificity in RND efflux
pumps is determined by residues in the periplasmic domain
(2-4, 7, 8). A recent study found that the V610F mutation in
the E. coli RND efflux pump YhiV, which is homologous to the
V612F mutation in AcrB, leads to a 16-fold increase in the
linezolid MIC compared to the MIC of the YhiUV-overpro-
ducing wild-type strain (2).

However, no systematic site-directed mutagenesis study of
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the phenylalanine residues that form the proposed hydropho-
bic binding pocket in AcrB has been described previously.

In the present study we constructed and tested such phenyl-
alanine mutants to examine the functional role of hydrophobic
residues in the proposed AcrB multidrug binding site. We used
as the parental strain the previously described multidrug-resis-
tant (gyrA marR) acrB-overexpressing E. coli K-12 strain
3-AG100 that was obtained after repeated exposure to a fluo-
roquinolone (5).

For site-directed mutagenesis the phage A-based homolo-
gous recombination system (Red/ET counterselection Bac
modification kit; GeneBridges, Heidelberg, Germany) was
used to introduce an rpsL-neo cassette into the acrB gene of
strain 3-AG100 (grown in Luria-Bertani broth) and to subse-
quently replace the cassette with an appropriate oligonucleo-
tide (the sequences of the PCR primers and oligonucleotides
that were obtained from Thermo Electron [Ulm, Germany]| are
shown in Table 1). Recombination events were confirmed by
PCR and nucleotide sequencing of the acrB gene using stan-
dard techniques.

To confirm production of the mutant AcrB protein, we per-
formed Western blotting using standard techniques. Most of
the mutants exhibited a strong immunogenic response; the
only exception was an F615A/F617A/F628A triple mutant
which was excluded from further study due to insufficient AcrB
expression (Fig. 1).

We used as a positive control strain F628F, which is a
pseudomutant with MICs and ethidium bromide (EtBr) and
phenylalanine-arginine B-naphthylamide (PABN) accumula-
tion properties corresponding to those of wild-type strain
3-AG100. F628A is characterized by a silent mutation from
TTC to TTT (sequence shown in Table 1) that demonstrates
that the site-directed mutagenesis technique has no inherent
effect.

The susceptibilities of the different mutants to various anti-
microbials and dyes and to the putative efflux pump inhibitors
1-naphthylmethylpiperazine (NMP) and PABN were charac-
terized by determining MICs in 96-well microtiter plates as
described previously (1, 2, 6) and are shown in Table 2. EtBr
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TABLE 1. Oligonucleotides and primers used for Red/ET-recombination”

Oligonucleotide Sequence (5" — 3')
Upper-oligol (615-628) ATCTGACCAAAGAAAAGAACAACGTTGAGTCGGTGTTCGCCGTTAACGGCGGCCTGGTGATGATGG
Lower-oligol (reverse complement orientation)...... TCCAGAGCQFI?I?IZCC‘}(";['I'ITCTTCGCCCGGACGATCGGCCCAGTCCTTCAAGGAAACTCAGAAGAACTCGTCAAG
Upper-oligolI (130-149) TééggngCCGTTGCTGCCGCAAGAAGTTCAGCAGCAAGGGGTGAGCGTTGGCCTGGTGATGATG
Lower-oligollI (reverse complement orientation) ....Agggg&%CATATTCGCCGCCACGTAGTCGGAGATATCCTCCT GCGTTCAGAAGAACTCGTCAAG
Upper-oligollI (175-194)) TééggggGAATATGAAAGATGCCATCAGCCGTACGTCGGGCGTGGGTGATGGCCTGGTGATGATG
Lower-oligolIII (reverse complement orientation)...TT%%%%%?Z%GATGGCGGTAATGACATCAACCGGCGTTAGCTGGAATTTTCAGAAGAACTCGTCAA
Repair-oligo 1: rep-acrB-Phe610Ala ...........coouveeeee ACGCI;I'#I‘G GGACGGTCGGTGGCAGCCGTTAACGGCTTCGGCTTTGCGGGACGTGGTCAGAATACCGGTA'ITG
CGTTCGTTTCCTTGAAGGACTGGGCCGATCGTCC
Repair-oligo 2: rep-acrB-Phe615Ala ............ccccuuueee. ACGTTGAGTCGGTGTTCGCCGTTAACGGCGCAGGCTTTGCGGGACGTGGTCAGAATACCGGTATTG

CGTTCGTTTCCTTGAAGGACTGGGCCGATCGTCC
ACGTTGAGTCGGTGTTCGCCGTTAACGGCTTCGGCGCAGCGGGACGTGGTCAGAATACCGGTATTG
CGTTCGTTTCCTTGAAGGACTGGGCCGATCGTCC

Repair-oligo 3: rep-acrB-Phe617Ala

Repair-oligo 4: rep-acrB-Phe628Ala .............ccuuc.e. ACGTTGAGTCGGTGTTCGCCGTTAACGGCTTCGGCTTTGCGGGACGTGGTCAGAATACCGGTATTG
CGGCAGTTTCCTTGAAGGACTGGGCCGATCGTCC

Repair-oligo 5: rep-acrB-Phe628Phe...........cccvuuuneee ACGTTGAGTCGGTGTTCGCCGTTAACGGCTTCGGCTTTGCGGGACGTGGTCAGAATACCGGTATTG
CGTTTGTTTCCTTGAAGGACTGGGCCGATCGTCC

Repair-oligo 6: rep-acrB-Del615-617.........cccoruucns GAACAACGTTGAGTCGGTGTTCGCCGTTAACGGC" """ """ GCGGGACGTGGTCAGAATACCGGTA
TTGCGTTCGTTTCCTTGAAGGACTGGGCCGATCGTCCGGGCG

Repair-oligo 7: rep-acrB-Phel36Ala .............ccccuu..c. GCCGCAAGAAGTTCAGCAGCAAGGGGTGAGCGTTGAGAAATCATCCAGCAGCGCACTGATGGTTG
TCGGCGTTATCAACACCGATGGCACCATGACGCAGGAGGATATCTCCGACTACGTGGCGGCGA

Repair-oligo 8: rep-acrB-Phel78Ala ... AGATGCCATCAGCCGTACGTCGGGCGTGGGTGATGTTCAGTTGGCAGGTTCACAGTACGCGATGCG

TATCTGGATGAACCCGAATGAGCTGAACAAATTCCAGCTAACGCCGGTTGATGTCATTACCG
Forward primer for amplification of repair

oligonucleotides 1-6 ATCTGACCAAAGAAAAGAACAACGTTGAGTCGGTG
Reverse primer for amplification of repair
oligonucleotides 1-6 CGCCCGGACGATCGGCCCAGTCCTT
Check-forward primer I CCTTCTTGCCAGATGAGGAC
Check-reverse primer I GCAGTACCCAGTTCCACGAT
Check-forward primer IT GTGCAGATCACCCTGACCTT
Check-reverse primer IT CGTTCTGCGCTTTGATGG
Check-forward primer I1T ACCATGACGCAGGAGGATA
Check-reverse primer III TAAGCTGTTGGCCTTTCACC

“ The upper and lower oligonucleotides include the primer sequences for amplification of the rpsL-neo cassette (indicated by italics). The 5’ parts of the oligonucleotides are
homologous to the corresponding acrB regions upstream and downstream (nucleotides 1793 to 1842 and 1885 to 1934 for exchange region I, nucleotides 338 to 387 and 448 to 497
for region II, and nucleotides 473 to 522 and 583 to 632 for region IIT). The exchanged nucleotide triplets in the repair oligonucleotides are indicated by bold type (e.g., GTT is changed
to TTT at nucleotides 1834 to 1836 in acrB). The underlined sequences in the amplification primers are the priming parts for the repair oligonucleotides, which have to be elongated.
The Check-forward and Check-reverse primers are used to confirm successful exchange of the rpsL-neo cassette and to sequence the modified region of acrB (check PCR product for
acrB region I, nucleotides 1685 to 2030; check PCR product for region II, nucleotides 262 to 634; check PCR product for region III, nucleotides 442 to 691).
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FIG. 1. Western blot analysis of mutant AcrB production. Total protein extracts of E. coli 3-AG100 mutants (14 pg protein) were separated by NuPAGE
Novex bis-Tris (Invitrogen, California) gel electrophoresis and probed with polyclonal anti-AcrB antibodies. Lanes MW contained molecular weight markers.
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FIG. 2. Increases in EtBr (a) and PABN (b) fluorescence in AcrB phenylalanine mutants compared to pseudomutant AcrB strain F628F. Fluorescence was
recorded for 30 min after addition of 2.5 wM EtBr or 200 uM PABN. The values are means of at least duplicate experiments. RFU, relative fluorescence units.

hanced susceptibility to almost all AcrB substrates tested (but
not to aminoglycosides and NMP, which are not AcrB sub-
strates), although the absolute changes varied considerably for
different substrates. In contrast, the F610A mutation increased

EtBr accumulation only moderately and did not affect PABN
accumulation. This difference might have been due to the
different time windows between the MIC and fluorescence
experiments. The dramatic impact on substrate MICs indicates
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FIG. 3. AcrB binding pocket based on the “tight” monomer 2GIF
structure coordinates (12). Phenylalanines are indicated by sticks. The
image was generated using the molecular visualization software PyMol
(http://pymol.sourceforge.net).

that the F610 residue has a special role in the substrate extru-
sion process, although the exact mechanism remains unclear.
The other targeted mutations, including conversion of phenyl-
alanines 136, 178, 615, 617, and 628 to alanine, generally had
smaller effects on substrate susceptibility and presumably efflux
function and binding, and the effects were variable depending
on the substrate.

This study was supported by BMBF grant 01KI9951.
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