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While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is
only now being examined. Here we describe a survey of the E. coli transcriptome carried out using a differential RNA sequencing
(dRNA-seq) approach, which can distinguish between primary and processed transcripts, and an automated prediction algo-
rithm for transcriptional start sites (TSS). With the criterion of expression under at least one of three growth conditions exam-
ined, we predicted 14,868 TSS candidates, including 5,574 internal to annotated genes (iTSS) and 5,495 TSS corresponding to
potential antisense RNAs (asRNAs). We examined expression of 14 candidate asRNAs by Northern analysis using RNA from
wild-type E. coli and from strains defective for RNases III and E, two RNases reported to be involved in asRNA processing. Inter-
estingly, nine asRNAs detected as distinct bands by Northern analysis were differentially affected by the rnc and rne mutations.
We also compared our asRNA candidates with previously published asRNA annotations from RNA-seq data and discuss the
challenges associated with these cross-comparisons. Our global transcriptional start site map represents a valuable resource for
identification of transcription start sites, promoters, and novel transcripts in E. coli and is easily accessible, together with the
cDNA coverage plots, in an online genome browser.

After many years of study, we are only now beginning to un-
derstand and appreciate the complexity of bacterial transcrip-

tomes. With the recent advances in deep-sequencing technology,
transcriptome sequencing (RNA-seq) now allows for the detec-
tion of transcripts that are present at low levels or were previously
missed by other methods of detection, the generation of global
transcript maps, and improved genome annotation (reviewed in
references 1 and 2). While these studies provide vast amounts of
information about bacterial transcriptomes and regulatory ele-
ments, they also raise challenges regarding comparisons between
studies and functions of the newly identified transcripts.

One group of underappreciated transcripts being uncovered
by these genome-wide analyses are RNAs that map opposite an-
notated coding regions, termed antisense RNAs (asRNAs). The
abundance of pervasive antisense transcription start sites (asTSS)
was first highlighted in an RNA-seq survey of the human pathogen
Helicobacter pylori, where asTSS were identified opposite �46% of
the genes (3). Subsequent RNA-seq studies in cyanobacteria (4)
and Gram-negative (5, 6) and Gram-positive (7–9) bacteria iden-
tified asRNAs expressed opposite 2 to 30% of annotated genes.
This wide range in numbers of asRNAs reported may reflect dif-
ferences in bacterial lifestyle or differences in the experimental
setup or analyses of the RNA-seq data sets.

Even for the transcriptome analyses of the well-studied model
organism Escherichia coli (10–22), the numbers of asRNAs re-
ported range from hundreds to thousands. This significant varia-
tion is due, in part, to differences in cDNA library preparation,
sequencing technology, and coverage as well as the criteria for
what is considered an asRNA. For example, three different RNA-
seq studies identified asRNAs opposite �2.6% (13), �23% (14),
and �80% (15) of genes. In another study, the number of asRNAs
found opposite coding regions ranged from �2% to �28%, de-
pending on the detection threshold (16).

Despite the hundreds of asRNAs reported, even using the most
conservative estimates, it is surprising how few functions have
been elucidated for these RNAs. A limited number of asRNAs have
been shown to modulate transcription, stability, or translation of
the corresponding sense transcripts (reviewed in references 23 and
24). Other recent genome-wide studies have proposed more gen-
eral functions for asRNAs. These include asRNA-directed diges-
tion of sense transcripts by RNase III in Gram-positive but not
Gram-negative organisms (25) and reciprocal effects on the ex-
pression of sense RNAs in a so-called “excludon” model (reviewed
in reference 26). Still other studies conclude most asRNAs lack
function and result from pervasive transcription (16, 27), colli-
sions between replication and transcription machinery (28), or
inefficient transcription termination, particularly in the absence
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of the Rho protein (9, 17, 18), or correspond to contaminating
genomic DNA (22).

To further explore the Escherichia coli transcriptome on a ge-
nome-wide scale, particularly the subset of asRNAs, we carried out
differential RNA sequencing (dRNA-seq) analysis (reviewed in
reference 29), which we analyzed by an automated TSS prediction
algorithm (30). This approach led us to identify, across three
growth conditions, �5,500 potential TSS within genes, 212 diver-
gently transcribed gene pairs with overlapping 5= untranscribed
regions (UTRs), and �5,400 potential asRNA loci. We examined
expression of 14 candidate asRNAs by Northern analysis and
found 9 to be differentially degraded by RNase III and RNase E,
two RNases implicated in asRNA-based regulation. Our global
TSS map is one of the best and most sensitive data sets for pro-
moter and transcript identification in the widely used model or-
ganism E. coli and is easily accessible at RegulonDB (21) and via an
online browser at http://cbmp.nichd.nih.gov/segr/ecoli/.

MATERIALS AND METHODS
Strain construction. The strains and oligonucleotides used for this study
are listed in Tables S1 and S2, respectively, in the supplemental material.
The asRNA deletion control strains were constructed using � Red-medi-
ated recombination (31) to replace the region encompassing the asRNA
signal along with 300 nucleotides (nt) on either side with a kanamycin
cassette. Deletion constructs were confirmed by sequencing and moved
into new wild-type or mutant backgrounds by P1 transduction.

Growth conditions. Cells were grown at 37°C in LB (10 g of tryptone,
5 g of yeast extract, 10 g of NaCl per liter) or M63 minimal glucose me-
dium (supplemented with final concentrations of 0.001% vitamin B1 and
0.2% glucose) to an optical density at 600 nm (OD600) of �0.4 and 2.0 for
LB and an OD600 of �0.4 for M63. At the indicated OD600, 25 ml of cells
(OD600 of 0.4) or 5 ml of cells (OD600 of 2.0) was combined in a 5:1 ratio
of cells to stop solution (95% ethanol, 5% acid phenol [pH 4.5]), vortexed,
incubated on ice for 10 min, and collected by centrifugation. Cell pellets
were snap-frozen in an ethanol-dry ice slurry and stored at �80°C.

Deep-sequencing sample preparation. Details for sample preparation
for deep sequencing can be found in Materials and Methods in the supple-
mental material. Briefly, RNA extraction for RNA-seq analysis was performed
as described previously using hot-acid phenol chloroform (3, 32). RNA sam-
ples were treated with DNase I to remove contaminating genomic DNA. RNA
samples free of genomic DNA were treated with terminator 5=-phosphate-
dependent exonuclease (TEX) (Epicentre) followed by tobacco acid pyro-
phosphatase (TAP) treatment (Invitrogen) as described previously (3). Con-
trol reactions lacking terminator exonuclease were run in parallel for each
sample. Unfractionated total RNA was used to construct cDNA libraries for
sequencing on GAIIx and HiSeq 2000 machines.

Analysis of deep-sequencing data. For a detailed description of the
read mapping, expression graph construction, normalization of expres-
sion graphs, correlation analysis, TSS prediction, comparison to other
data sets, and other computational analyses, see Materials and Methods in
the supplemental material.

(i) Read mapping. Between 1.8 and 9.8 million reads for each of the
cDNA libraries were mapped to the E. coli MG1655 genome (NCBI acces-
sion no. NC_000913.2 [24 June 2004]) using our RNA-seq pipeline
READemption (33) and segemehl, with an accuracy cutoff of 95% (34).

(ii) Correlation analysis. Nucleotide- and gene-wise Spearman and
Pearson correlation coefficients were calculated based on concatenated
values of forward and reverse strand position-wise coverage files and vi-
sualized using the R package corrplot. Gene-wise correlation values uti-
lized read overlap counts based on NCBI annotations (accession no.
NC_000913.2).

(iii) TSS prediction. Transcriptional start site (TSS) prediction was
performed using the program TSSpredator (http://it.inf.uni-tuebingen
.de/TSSpredator) (30). TSS were classified as primary TSS (pTSS), sec-

ondary TSS (sTSS), asTSS, internal TSS (iTSS), or orphan TSS (oTSS)
based on the location relative to gene annotations. pTSS and sTSS are
within 300 nucleotides upstream of a gene, with pTSS having the highest
expression values. All other TSS associated with the gene are considered
secondary. iTSS are internal to a gene on the sense strand, while asTSS are
internal or within 100 nucleotides of a gene on the opposite strand of the
annotation. oTSS do not meet any of the above requirements.

(iv) Comparison to DOOR. A table containing all operon annotations
(1,526 single-gene operons and 851 operons consisting of multiple genes)
was downloaded from the Database of prOkaryotic OpeRons (DOOR) 2.0
website (35) and compared to a final set of 2,441 TSS.

(v) Comparison of pTSS and sTSS to RegulonDB promoters. We
extracted 6,406 TSS annotated based on the “strong evidence” classifica-
tion (21) from the RegulonDB promoter table (version RegulonDB 8.5,
11-28-2013) and classified them according to our classification scheme,
resulting in a set of 3,987 pTSS and sTSS. We conducted a pairwise com-
parison of the positions to our data (4,261 pTSS and sTSS) based on a
maximum allowed distance of 3 nt.

(vi) Expression analysis and binning. Expression values for predicted
TSS classified as exclusively antisense or exclusively primary or secondary
were calculated based on overlap counts for a 50-nt window downstream
of the respective TSS position from which reads per kilobase per million
mapped reads (RPKM) values were calculated (36). The TSS were
grouped into six bins according to their RPKM values.

(vii) Comparison of asRNAs detected in our and previous studies.
asTSS annotations were retrieved from the Materials and Methods sec-
tions in the supplemental material from published studies (13, 14, 16, 19)
or were downloaded from RegulonDB (data set version 3.0 [21] and data
set version 2.0 [20]). We excluded the study by Li et al. (15), which re-
vealed �82,000 asTSS, as this number is very high compared to previous
studies and our study and thus would bias the comparative analyses. We
compared the asTSS from each data set, including our 6,379 predicted
asTSS, to the asTSS of all other data sets in a pairwise manner, requiring
either a precise match of the annotated positions or allowing a variation of
1, 2, 3, or 10 nt.

Northern analysis. RNA extraction for Northern analysis was per-
formed using TRIzol reagent (Invitrogen). Northern analysis of 10 �g of
total RNA was performed on denaturing 8% acrylamide–7 M urea gels as
described previously (37), with minor changes for detection using ribo-
probes (for details and oligonucleotides used to create the riboprobes, see
Materials and Methods in the supplemental material).

RNA-seq data accession number. Raw sequence reads were uploaded
to the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm
.nih.gov/geo) under accession no. GSE55199.

RESULTS
dRNA-seq reveals the primary transcriptome of E. coli MG1655.
To detect the transcripts expressed by E. coli, we collected two
independent biological replicates (B1 and B2 samples) from
MG1655 wild-type cells grown to the exponential phase (OD600 of
�0.4) or stationary phase (OD600 of �2.0) in LB medium (sam-
ples LB 0.4 and LB 2.0, respectively) or grown to the exponential
phase (OD600 of �0.4) in M63 minimal glucose medium (sample
M63 0.4) (Fig. 1; see also Table S3 in the supplemental material).
For all six biological samples, total RNA was extracted and sub-
jected to dRNA-seq library preparation for primary transcriptome
analysis as described previously (3). Specifically, prior to cDNA
library construction, half of each RNA sample was treated with 5=
terminator exonuclease (�TEX samples), which degrades RNAs
containing a 5=-monophosphate (5=-P), thereby enriching for pri-
mary transcripts containing 5=-triphosphates (5=-PPP). The other
half of each sample was left untreated (�TEX samples) and thus
contains both primary transcripts (5=-PPP) and processed RNAs
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(5=-P). Subsequently, the 5=-PPP ends in both samples were con-
verted to 5=-P ends for cDNA library preparation.

The cDNA libraries of the first biological replicates (B1-L1)
were sequenced on an Illumina Genome analyzer IIx (GA sam-
ples), while the second biological replicates (B2-L1) were se-
quenced on a HiSeq 2000 sequencer (HS1 samples). To examine
variation between sequencing runs, the B2-L1 libraries were rese-
quenced using the HiSeq 2000 (HS2 samples). To identify varia-
tion introduced during library preparation, technical replicates of
the LB 2.0 libraries (B1-L2 and B2-L2 samples) were also gener-
ated and sequenced using the HiSeq 2000 (Fig. 1; see also Table S3
in the supplemental material).

Strand-specific sequencing resulted in a total number of �1.8
to 3.6 million reads per sample for the GA set and �5.3 to 9.8
million reads per sample for the HS sets after quality trimming
(see Table S4 in the supplemental material). For all of the libraries,
�70% of the reads could be mapped to the E. coli genome (NCBI
accession no. NC_000913.2) indicating that the sequencing runs
consisted of numerous high-quality reads. Read mapping analysis
showed that for all three growth conditions, 65 to 80% of reads
mapped to annotated regions of the genome while 2 to 6%
mapped antisense to published annotations. The remainder of the
reads mapped to unannotated intergenic regions, which also in-
clude UTRs (see Table S5 in the supplemental material). These
data indicate the majority of transcripts correspond to the sense
strand of genes; however, a small percentage of antisense tran-
scription occurs, particularly opposite mRNAs.

Correlation analysis reveals variation associated with library
preparation and sequencing platform. To assess the similarity
between replicates, we calculated Spearman and Pearson correla-
tion coefficients for nucleotide-wise expression values for both
strands of all the �TEX and �TEX libraries (see Fig. S1 in the
supplemental material). For each biological condition and both
types of analysis, we noted the highest correlation among sequenc-
ing replicates (B2-L1-HS1 and B2-L1-HS2). The lowest correla-
tion was between libraries sequenced on the GAIIx and HiSeq
2000, likely due to differences in sequence coverage and cDNA

library preparation protocols for the two platforms. Since the nu-
cleotide-wise correlations are sensitive to slight fluctuations in
cDNA read counts, we also assessed the correlation coefficients for
gene-wise expression values, defined as the number of mapped
reads within genes annotated by NCBI, among the �TEX and
�TEX libraries. Overall the correlation increased but had a pat-
tern similar to that seen for the nucleotide-wise comparisons.

Despite the high correlation between replicates and overall
similar cDNA coverage patterns, a few regions showed variable
expression or enrichment in the �TEX libraries across samples,
likely due to the number of reads produced by the different se-
quencing instruments combined with differences in library prep-
aration. However, as we had high correlation between replicates,
similar read distributions across replicates, and agreement on the
positions of transcript ends, we proceeded with automated ge-
nome-wide TSS annotation.

The automated TSSpredator pipeline predicts previously
unannotated TSS. Several RNA-seq-based studies have reported
genome-wide annotations of 5= ends of E. coli genes, but most
cannot distinguish between primary and processed transcripts,
limiting the potential to identify these distinct types of transcripts
(12, 20). Our dRNA-seq approach allows for the precise annota-
tion of TSS based on a characteristic enrichment pattern in the
�TEX libraries relative to the �TEX libraries, which facilitates the
differentiation between primary (5=-PPP) and processed (5=-P)
transcripts (see Fig. S2A in the supplemental material) (3). In
previous dRNA-seq studies, global (TSS) annotations were car-
ried out by laborious manual inspection of enrichment patterns
(3, 5, 6). To automate this annotation step, we utilized the TSS-
predator pipeline recently developed to annotate TSS among mul-
tiple strains of Campylobacter jejuni (30). The TSSpredator pre-
diction algorithm employs the dRNA-seq data to determine the
location of a TSS based on identifying positions with sharp in-
creases in expression in the �TEX library relative to the untreated
�TEX control (see Fig. S2A and Materials and Methods in the
supplemental material).

Using TSSpredator, TSS can be annotated in a comparative

FIG 1 Summary of the biological, library, and Illumina sequencing replicates that were subjected to dRNA-seq analysis in this study.
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manner among libraries through the integration of replicate in-
formation. If a strong enrichment is observed in one replicate, less
strict parameters can be applied to the same position in other
replicates to ensure identification of TSS despite differences in
library or sequencing preparations while still maintaining strin-
gent criteria for detection. To perform such an analysis for our
replicates of the three biological conditions (see Materials and
Methods in the supplemental material), we adjusted the “match-
ing replicates” parameter, which defines the minimum number of
replicates in which a TSS must be detected for a particular biolog-
ical condition. For the M63 0.4 and LB 0.4 conditions, where only
three replicates were available, we required a TSS to be detected in
at least two replicates, while for the LB 2.0 condition, we required
detection in at least three of the five replicates. All other parame-
ters were set to default values as established previously (30).

We predicted a total of 14,868 potential TSS mapping through-
out the E. coli genome (see Data set S1 in the supplemental mate-
rial). Of these, 6,297 were detected under all three conditions,
1,151 were detected only in cells growing exponentially in M63
minimal medium, 470 TSS were found in cells growing exponen-
tially in LB, and 1,947 were found in stationary-phase cells grow-
ing in LB (Fig. 2A; see also Fig. S3A in the supplemental material
for examples of TSS detected under only one condition). The
higher number of TSS identified for the LB stationary-phase cells
might be a result of changes in transcriptional programs required
to survive in the stationary phase (38).

TSSpredator automatically assigns TSS to five different classes:
primary TSS (pTSS; main transcription start of a gene or operon),
secondary TSS (sTSS; alternative start with lower expression), in-
ternal TSS (iTSS; start within a gene), antisense TSS (asTSS; tran-
script start antisense to a gene �100 nt), and orphan TSS (oTSS;
not associated with annotation) based on the location relative to
existing gene annotation (see Fig. S2B in the supplemental mate-
rial). A TSS can fall into more than one category, depending on its
location relative to the surrounding gene annotations. For exam-
ple, in the case of overlapping 5= UTRs, a particular TSS can be
both a pTSS and an asTSS. For downstream genes within operons,
a pTSS can also be internal to the upstream genes. Among the
14,868 predicted TSS, we identified 2,672 pTSS (1,707 classified
solely as pTSS), 1,589 sTSS (850 classified solely as sTSS), 5,574
iTSS (4,466 classified solely as iTSS), and 6,379 asTSS (5,495 clas-
sified solely as asTSS) (Fig. 2B).

To assess the coverage of our TSS predictions, we compared the
number of TSS classified as pTSS only or pTSS and asTSS (2,057) and
the number classified as pTSS and iTSS or pTSS, iTSS, and asTSS
(615) with the number of genes classified as single-standing genes
(1,526) or first genes within operons (851) in the Database of prO-
karyotic OpeRons (DOOR) (35). In total, after excluding all TSS as-
signed to genes not annotated in DOOR (see Materials and Methods
in the supplemental material), we used 2,441 of our TSS classified as
pTSS. In agreement with the assumption that a pTSS must precede
genes annotated as single genes or first genes in DOOR, we detected a
pTSS for �78% of the single-standing or first genes in operons
(1,847/2,377) (see iclR in Fig. S3B in the supplemental material). The
�22% of single or first genes of operons for which no pTSS was
predicted by our data (530/2,377) (see ybeT in Fig. S3B) generally
were missed due to low read coverage. For several of the genes with-
out detected TSS, we found a processing site upstream, as indicated
by an enrichment in the �TEX compared to the �TEX libraries,

indicating that they could be cotranscribed with upstream genes (see
fbaA in Fig. S3B).

Approximately 24% (594/2,441) of genes for which we de-
tected a pTSS were not classified in DOOR as single or first genes
in an operon. The majority of these TSS likely correspond to real
promoters that are located internal to upstream genes within an
operon defined by DOOR (see thrA in Fig. S3B in the supplemen-
tal material). These TSS could drive transcription of unannotated
alternative suboperons and thereby uncouple expression of the
subset of genes from the longer operon. Some of these TSS are also
found upstream of genes previously predicted to be in operons but
are likely single genes (see pheM in Fig. S3B). Overall, these com-
parisons indicate that despite previous global transcriptome stud-
ies, the full complexity of the E. coli transcriptome is not yet
known.

A comparison of our TSS predictions with TSS annotated in

FIG 2 Automated TSS prediction across three different growth conditions
using TSSpredator. (A) Distribution of predicted TSS across the biological
conditions M63 0.4, LB 0.4, and LB 2.0. (B) Distribution of predicted TSS in
the primary, secondary, internal, orphan, and antisense TSS classes (pTSS,
sTSS, iTSS, oTSS, and asTSS, respectively).
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RegulonDB (21), using a maximum distance of 3 nt, revealed that
�34% of our pTSS and sTSS overlap those annotated in Regu-
lonDB (see Data set S1 in the supplemental material), while �41%
of the TSS from RegulonDB, classified as pTSS or sTSS, overlap
our predictions. A TSS detected in our data but previously not
annotated in RegulonDB is the pTSS for lspA, encoding a prolipo-
protein signal peptidase, located internal to the upstream ileS gene
(Fig. 3A). A promoter corresponding to the TSS based on direct
experimental evidence was previously reported (39). Figure 3B
shows a clear exponential-phase-specific pTSS for plsX, encoding
a putative phosphate acyltransferase, although no evidence was
present in RegulonDB, and the sequence does not carry an obvi-
ous promoter consensus sequence. These discrepancies illustrate
that, even in a well-studied model organism like E. coli, TSS anno-
tation is still incomplete. We next carried out further character-
ization of the noncanonical iTSS and asTSS.

iTSS are abundant and frequently located at the 3= ends of
genes. We identified 5,574 iTSS internal to annotated genes (Fig.
2B). It was recently reported that the majority of iTSS identified in
the Gram-negative bacterium Shewanella oneidensis are present
near the 5= or 3= ends of the genes (40). For a comparison, we

examined the location of the 4,466 iTSS classified as iTSS only as
one group and the 968 iTSS that are also annotated as pTSS or
sTSS as a second group. Each annotated gene in which an iTSS was
detected was divided into 10 equal sections, and the number of
iTSS located in each section was counted for all genes. Those clas-
sified as iTSS only showed a broad distribution with similar num-
bers across the entire gene (see Fig. S4A in the supplemental ma-
terial). In contrast, for the group of iTSS also classified as pTSS or
sTSS, the majority (�86%) were located in the last 30% of the
gene (see Fig. S4B). These 86% are likely TSS for downstream
genes, driving alternative expression of suboperons (for an exam-
ple, see thrA in Fig. S3B in the supplemental material) or the syn-
thesis of small regulatory RNAs corresponding to the 3= ends of
mRNAs as was observed for the MicL RNA, whose promoter is
within the cutC gene (41). Whether any of the iTSS in other cate-
gories result from spurious transcription or are generating func-
tional alternative mRNAs or regulatory RNAs will require further
characterization.

pTSS and sTSS from divergently transcribed gene pairs could
also serve as asRNA regulators. In addition to the 5,495 TSS clas-
sified as asTSS only, we identified 350 pTSS and 386 sTSS that are
also classified as asTSS. Examination of the regions encompassing
these TSS revealed 212 divergently transcribed gene pairs with
possible overlapping 5=UTRs (see Data set S2A in the supplemen-
tal material), which could result in asRNA-mediated regulation of
these genes (reviewed in reference 26) or could influence pro-
moter occupancy (42). The set includes several gene pairs that
encode proteins of opposing function, such as entS and fepD, en-
coding an enterobactin efflux system and a ferric enterobactin
ABC transporter, respectively, and pspF and pspA, encoding the
transcription factor PspF (phage shock protein F) and its antago-
nizing regulatory protein, PspA (see Fig. S5 in the supplemental
material). Further characterization of these gene pairs will be re-
quired to determine if asRNA-mediated regulation occurs via the
overlapping 5= UTRs.

Some asTSS show high or differential levels of expression.
Given that several asRNAs with characterized functions are ex-
pressed at high levels (reviewed in reference 43), we compared the
relative expression levels for the 5,495 asTSS only (see Data set S3
in the supplemental material) to all pTSS only and sTSS only (see
Data set S1 in the supplemental material) and TSS corresponding
to known annotated asRNAs (see Table S6 in the supplemental
material). We calculated reads per kilobase per million mapped
reads (RPKM) values for all libraries utilizing a 50-nt window
downstream of the predicted asTSS. The TSS were subsequently
grouped into 	10, 10 to 102, 102 to 103, 103 to 104, 104 to 105, and
�105 bins according to their RPKM values. Using the highest
expression value for a TSS among all conditions, we plotted the
distribution of exclusively asTSS, exclusively pTSS or sTSS, and
known annotated asRNAs for all conditions (Fig. 4A) and for each
library individually (data not shown). For both the combined and
individual sets, the distributions for pTSS or sTSS differ from the
distributions for asTSS. Most pTSS or sTSS group within the 102

to 103 and 103 to 104 expression bins, while most asTSS are in the
10 to 102 and 102 to 103 expression bins (Fig. 4A). In contrast,
most previously annotated asRNAs fall into the 103 to 104 and 104

to 105 bins. These distributions suggest that while a subset of as-
RNA candidates could be present at a high level, the majority of
our predicted asRNA candidates might only exist as a few copies

FIG 3 Examples of genes with newly detected pTSS. Screenshots showing the
relative cDNA coverage plots for representative �TEX or �TEX libraries for the
M63 0.4, LB 0.4, and 2.0 growth conditions across the genomic regions encom-
passing the lspA (A) and plsX (B) genes. The x axis depicts the genomic coordi-
nates, while the y axis indicates the relative cDNA scores (normalized number of
mapped cDNA reads). Red arrows indicate the previously unannotated TSS de-
tected by our analysis. Promoter sequences for the new TSS, including the�10 and
�35 sequences (boxed) and bases corresponding to TSS (red) are depicted below
each plot.
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per cell or might be unstable transcripts that are rapidly degraded
during RNA isolation and library preparation.

Since several functional asRNAs are expressed under specific
conditions (44, 45), we also examined the distribution of the pre-

dicted asTSS across the different growth conditions (Fig. 4B). A
total of 2,071 of the 5,495 asTSS were detected under all condi-
tions. In general, candidate asRNAs in the �105 expression bin,
showed a high signal for all growth conditions and library repli-

FIG 4 Comparison of asTSS. (A) Distribution of only asTSS, only pTSS or sTSS, and NCBI-annotated asRNAs in RPKM expression bins. The RPKM expression values
were calculated based on cDNA read counts within 50-nt windows starting at the TSS. (B) Distribution of TSS classified exclusively as asTSS across the three biological
conditions M63 0.4, LB 0.4, and LB 2.0. (C) Pairwise comparison of asTSS identified by our study and in previously published studies by Conway et al. (19), Dornenburg
et al. (14), Raghavan et al. (16), Shinhara et al. (13), Mendoza-Vargas et al. (20), and Salgado et al. (21). The total numbers of annotated asTSS are shown on the main
diagonal of the matrix. asTSS from the studies in the rows are compared to the studies in columns, and the number of TSS with exact matches is reported in the matrix
entries. The background color depicts the percentage of overlapping asTSS relative to the total number of asTSS from the study in the particular row.
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cates (see Data set S3 in the supplemental material). Like the over-
all TSS distribution, most condition-specific asTSS were detected
in LB 2.0 (719), many of which are found in the 104 to 105 expres-
sion bin, followed by M63 0.4-specific asTSS (516), and LB 0.4-
specific asTSS (205). There was significant overlap (1,285) be-
tween asTSS detected in exponential growth in M63 minimal
glucose and stationary-phase LB medium, but limited overlap
(145) between asTSS detected in the exponential- and stationary-
phase LB samples. Again, these distributions mirror the ratios in
the overall transcription profiles.

The majority of pTSS, iTSS, and asTSS are preceded by �70

promoter elements. To detect potential differences between the
promoters corresponding to the pTSS, iTSS, and asTSS, we com-
pared the difference in expression for the pTSS only, iTSS only, and
asTSS only detected in LB 0.4 with those detected in M63 0.4 (see Fig.
S6 in the supplemental material). Overall, there were proportionally
more pTSS showing differential expression than iTSS and asTSS. This
suggests that the pTSS generally are more highly regulated.

We also examined the sequences upstream of the 1,707 pTSS
only, 4,466 iTSS only, and 5,495 asTSS using the MEME soft-
ware (46). With a window of �50 to �1 relative to the TSS, the
promoter motifs derived for the three classes of TSS overall
were very similar (see Fig. S7 in the supplemental material). All
had a potential �10 element resembling the TATAAT consen-
sus for the housekeeping 
70 transcription factor (reviewed in
reference 47). The enrichment for two T residues comprising a
potential 
70 �35 element was significantly less than what was
observed for the �10 element; however, both pTSS and iTSS
logos showed some enrichment for a G at position �14, char-
acteristic of an extended �10 sequence associated with 
70

promoters with weak �35 elements. A window of �50 to �5
relative to the TSS revealed that a subset of pTSS, iTSS, and
asTSS show enrichment for a purine at �1 and a pyrimidine at
�1, features of E. coli 
70 promoters reported previously (10).
Overall, despite differences in the dRNA-seq signal, most of the
pTSS, iTSS, and asTSS are likely transcribed by the 
70 holoen-
zyme.

Comparison of asTSS prediction with published data sets re-
veals limited overlap in candidate asRNAs. A number of transcrip-
tome data sets have recently been published for E. coli with differ-
ent extents of antisense transcription reported (13–16, 19–21).
Given the discrepancy in numbers of annotated asRNAs, we were
interested in the extent of overlap between our asRNA predictions
and those of the other studies. For our cross-study comparison, we
only included studies where detailed asRNA annotations were
provided. We compared our asTSS only (see Data set S3 in the
supplemental material) to the asRNA candidates reported by each
group rather than to the primary data, given the differences in data
generation, analysis, quality, and quantity of reads mapping to the
E. coli genome (see Table S7 in the supplemental material). We
first required the TSS positions between two studies to match
precisely (Fig. 4C). This resulted in very limited overlap across the
studies. The largest overlap occurred between our data set and that
of Shinhara et al. (13), with 33% of their asRNAs overlapping our
predictions. In some cases, increasing the window size within
which an asTSS could match, to 1, 2, 3, or 10 nt, increased the
overlap between studies (see Fig. S8 in the supplemental material).
For example, with the 1-nt window, 79% (71/90) of the asRNAs
detected by Raghavan et al. (16) corresponded to an asTSS in our
data compared to �12% (11/90) when an exact match was re-

quired. In other cases, the increase in window size did not make
much difference. There was no overlap between the asRNAs pre-
dicted by Mendoza-Vargas et al. (20) compared to Raghavan et al.
(16), Shinhara et al. (13), and Salgado et al. (21), regardless of the
window size. The discrepancies between the asTSS reported likely
result from combinations of differences in the quality of the se-
quencing reads, analysis pipelines, expression cutoffs, and defini-
tions of what constitutes an asRNA.

We also compared our asTSS map to a recent study by Ly-
becker et al. examining the double-stranded transcriptome of
E. coli (48). The premise of this study was that RNAs under as-
RNA-mediated control would be present in double-stranded
RNA duplexes and thus should be identified by coimmunopre-
cipitation (co-IP) with a double-stranded RNA (dsRNA)-specific
antibody followed by RNA-seq. We compared these reported IP
dsRNAs to our asTSS set and considered them to match if an
asTSS is found within the region 10 nucleotides upstream of an IP
dsRNA 5= end to 10 nucleotides upstream of the corresponding 3=
end on at least one strand (see Data set S2B in the supplemental
material). We excluded the class of overlapping 3=UTRs identified
by Lybecker et al. from our analysis as they are not covered by our
dRNA-seq, which sequences from the 5= end of transcripts. This
comparison yielded matching asTSS for 63% of the IP dsRNAs
(193/308).

Candidate asRNAs are detected as distinct bands by North-
ern analysis. As independent verification of the predicted
asRNAs, we selected a panel of 14 candidate asRNAs for Northern
analysis (Fig. 5; see also Fig. S9 and Table S8 in the supplemental
material). While we primarily selected candidates from the two
highest-expression bins (see Data set S3 in the supplemental ma-
terial), we also randomly selected a few candidates, which showed
differences in expression among growth conditions or were not
detected by others, from the third expression bin. We employed
riboprobes covering the region of the dRNA-seq signal and im-
portantly also probed total RNA from control strains where the
region of mapped signal was deleted from the E. coli chromosome.
In addition, we included total RNA isolated from strains defective
for ribonucleases reported to be involved in asRNA processing
and degradation; an rnc mutant lacking RNase III, an endonu-
clease that cleaves double-stranded RNAs, and an rne-131 mutant
with defective RNase E, an essential endonuclease that associates
with the RNA degradosome and cleaves single-stranded RNA. The
C terminus of RNase E is deleted in the rne-131 mutant, such that
the enzyme can no longer associate with the degradosome, thus
giving rise to reduced RNA turnover (49, 50).

We detected clear specific bands for RNA isolated from wild-
type cells for six of the candidate asRNAs (as-gsiB, as-argR,
as-ymfL, as-eutB, as-speA, and as-yliF) (Fig. 5; see also Fig. S9 in
the supplemental material). Specific bands for five other candi-
dates (as-qorA, as-holE, as-serU, as-thrW, and as-ytfJ) were most
evident in one or both of the RNase mutant strains, while three
candidates (as-yeaJ, as-gmr, and as-yggN) were only detected as
smears. For 10 of the probes, we detected nonspecific bands pres-
ent in all lanes serving as a loading control and emphasizing the
importance of including samples from control deletion strains.

asRNAs show differential sensitivity to degradation by
RNase E and RNase III. We were surprised to find that the RNase
mutants had varied impacts on the levels of our asRNA candi-
dates. First, counter to expectations, the levels of some asRNAs,
such as as-ymfL and as-speA were decreased in both RNase mutant
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strains (Fig. 5; see also Fig. S9 in the supplemental material). Pos-
sibly these asRNAs are destabilized by interactions with RNAs that
are normally degraded by RNase III and RNase E, or alternatively,
processing is required for stabilization of these transcripts (51).
The levels of three asRNAs (as-argR, as-qorA, and as-eutB) were
elevated in the rne mutant, while the levels of four others (as-holE,
as-serU, as-ytfJ, and as-thrW) were greatly elevated in the rnc mu-
tant relative to the wild-type strain. Northern analysis carried out
with RNA isolated from rnc mutants lacking the four chromo-
somal regions confirmed that the signal was specific (see Fig. S10
in the supplemental material; data not shown for as-thrW). Over-
all, these observations show that our detected asRNAs are sub-

strates for different RNases and that regulation of asRNA levels by
RNases may be more complex than previously thought.

DISCUSSION

In this study, we applied dRNA-seq and automated TSS predic-
tion to the E. coli K-12 strain MG1655 grown under three different
conditions to reveal �14,000 candidate TSS, of which �5,500
correspond to potential iTSS and �5,400 correspond to potential
asRNAs. In contrast to previous E. coli transcriptome studies,
dRNA-seq allowed us to globally map TSS since the approach
specifically captures primary 5= ends and thus allows discrimina-
tion between processed and primary transcripts. Our global TSS

FIG 5 Northern blot detection and cDNA coverage plots of selected candidate asRNAs from the top three expression bins. In all cases, wild-type E. coli strain
MG1655, the corresponding deletion strain for the particular asRNA as well as an rnc deletion strain, and an RNase E (rne-131) mutant strain were grown in LB
or M63 supplemented with glucose until they reached the indicated OD600. Samples were processed for Northern analysis and probed with a riboprobe specific
for the asRNAs. The bands corresponding to the asRNAs are indicated with black stars. Schematics of cDNA coverage plots and genomic locations encoding the
respective candidate asRNAs are shown on the right, with the position and direction of the asTSS indicated by red arrows. y axes indicating relative cDNA
coverage have the same scale for the forward and reverse strands.
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map and coverage plots are integrated into RegulonDB and are
easily accessible in an online browser at http://cbmp.nichd.nih
.gov/segr/ecoli/, which allows researchers to readily identify can-
didate TSS and examine relative expression for their genes of in-
terest. Our data represent a useful resource for the further
characterization of promoters and novel RNAs in E. coli.

Automated TSS prediction has advantages and disadvan-
tages. While the dRNA-seq analysis combined with automated
TSS prediction used here provides a wealth of information, some
reflection on the advantages and disadvantages is warranted. An
automated approach for TSS annotation avoids potential bias in-
troduced by manual annotation given that it follows defined rules
and parameters. Automated annotation also facilitates rapid rep-
etition of the analysis with different parameters or with additional
data sets, a refinement that is impractical for manual annotation,
especially for larger genomes or multiple strains or multiple con-
ditions. However, choosing the right parameters for automated
annotation, with the appropriate balance between sensitivity and
specificity, can be difficult. Increasing the stringency for detection,
for example, by filtering for those TSS whose step height is
greater than 10 (see Data set S1 in the supplemental material)
would reduce the number of TSS to �4,400 (data not shown).
Additionally, we analyzed the data for two of our LB 2.0 sam-
ples using another automated annotation program, TSSAR,
with default parameters (52). This program predicted almost
twice as many TSS as the TSSpredator program (data not
shown) but is unable to integrate information from replicate
samples. Therefore, for the TSS map presented in this study, we
chose to use the parameters established on the basis of manual
annotation of Helicobacter pylori dRNA-seq data and used for TSS
annotation in Campylobacter jejuni (3, 30), which predicted TSS
that were most consistent with manual annotation of selected re-
gions of our E. coli data.

The automated TSSpredator program employed here led to the
prediction of many more TSS candidates in E. coli than for other
manually annotated data sets. To understand this difference be-
tween manual and automated annotations, we carried out auto-
mated TSS prediction using our E. coli parameters with the Sal-
monella dRNA-seq data sets from Kröger et al. (6). For the
Salmonella dRNA-seq sets, we predicted �22,000 potential candi-
date TSS, of which �9,700 were found under all conditions (data
not shown). These numbers are 4-fold higher than the TSS pre-
dicted by manual annotation. During manual TSS annotation,
TSS corresponding to poorly expressed RNAs may not be anno-
tated, resulting in underdetection of potential promoters tran-
scribed at low levels. On the other hand, a higher discovery rate
associated with automated TSS prediction may result in the false
annotation of some promoters. It is also likely that our global map
is still not saturated and that we have missed TSS that are not
expressed under the limited growth conditions examined, as has
been found for studies of Salmonella grown under a wide range of
conditions (6).

Comparison of deep-sequencing data sets reveals sources of
variation. When we compared our replicate deep-sequencing
data sets, we found variation between different library prepara-
tions and sequencing platforms. The comparison of biological and
technical replicates revealed that library preparation itself can lead
to larger variation than found among biological replicates for
which cDNA libraries were generated in parallel. ’t Hoen et al.

similarly found that library preparation is a major source of vari-
ation for human samples (53).

Our comparisons of asRNAs predicted by different published
RNA-seq data sets further highlighted discrepancies and led us to
consider additional sources of variation. Differences in RNA iso-
lation protocols might limit the ability to capture unstable tran-
scripts or RNAs of certain sizes. For example, small RNA fractions
are often lost in column-based purification methods, and rRNA
depletion kits can lead to unintended removal of non-rRNA tran-
scripts. The use of terminator exonuclease (TEX) treatment to
enrich for primary transcripts may miss the TSS of RNAs that are
monophosphorylated due to the pyrophosphate removal by the
enzyme RppH (54). However, we identified TSS for the majority
of validated RppH targets, suggesting this is not a significant lim-
itation in our data set (data not shown). Other inherent properties
of the RNA molecules also can be a source for bias as it has been
reported that RNAs with high GC content are less readily ampli-
fied and that linker ligation is more efficient when certain nucle-
otides are at the 3= and 5= ends (55).

Additionally, differences in data analysis, including differences
in read quality filtering, mapping protocols (using all or only
uniquely mapped reads), and especially different methods and
thresholds for assembling and annotating transcripts, can lead to
significantly different results. Despite a rapid increase in data gen-
eration, the availability of standardized RNA-seq analysis pipe-
lines is still limited (56), particularly for bacterial transcriptomes.
Nevertheless, RNA-seq has been an invaluable resource and has
revolutionized bacterial, archaeal, and eukaryotic transcriptome
analyses. Hopefully, as the field of deep sequencing continues to
mature, standards for sample preparation, depth of sequencing,
number of replicates sequenced, and data analysis as well as simple
platforms for shared data visualization can be developed that will
facilitate the comparisons of data generated by different groups.

Independent documentation of asRNAs is advised before
functional analysis. Our dRNA-seq approach revealed more than
5,400 asTSS. We do not know how many of these predicted asTSS
correspond to spurious transcripts rather than functional RNAs,
although some show differential expression under the growth
conditions examined (see Data set S3 in the supplemental mate-
rial). The above-mentioned RNA-seq study of Salmonella, which
analyzed RNAs from 22 different growth conditions, reported
	500 asRNAs (5, 6). These authors found that �1.75% of their
reads mapped antisense to annotations (5) which is similar to
what we observed (2 to 4%) (see Table S5 in the supplemental
material) and to what has been reported for another E. coli RNA-
seq study (�2%) (16). Thus, the high number of asTSS we detect
probably is not due to large differences in general transcriptome
coverage but rather is due to differences in data analyses and an-
notation. Moreover, we specifically enriched for the 5= ends of
transcripts, which might be more stable than internal degradation
fragments, and did not include fragmentation steps that could
result in the lower numbers of sequenced 5= ends of transcripts.

As our comparison among different E. coli studies showed,
there is extensive variation in asRNA annotation. Nevertheless, we
found that several asRNAs were detected in multiple RNA-seq
studies (Fig. 4C; see also Fig. S8 and Data set S3 in the supplemen-
tal material). Given the laborious process of functional investiga-
tion, however, we propose that further validation of asRNAs with
appropriate controls is critical for defining candidates for further
study. We independently validated expression of 14 candidate as-
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RNAs by Northern analysis. For several of the asRNA candidates
tested, nonspecific bands were detected in all lanes, emphasizing
the importance of including samples from the control deletion
strains. Expression was tested by Northern or quantitative PCR
(qPCR) analysis for a subset of previously predicted asRNAs (13,
16, 48), although none of these studies included control deletion
strains.

Overall, with the exponential increase in deep-sequencing
studies and rapidly improving sequencing performance and cov-
erage, more and more asRNA candidates will be reported in all
organisms. To answer the questions of how many asRNAs identi-
fied in these analyses function as base-pairing RNA regulators, are
used on a global scale for driving RNA processing, or are abortive
transcripts resulting from degenerate promoters or RNA poly-
merase collisions, will require further experimental validation and
characterization. Automated prediction of candidate asRNAs as
reported here, combined with detection by multiple approaches,
by multiple studies, or under specific growth conditions, will help
identify those candidates most promising for future examination
of phenotypes associated with the lack of the asRNA as well as
mechanisms of asRNA action.
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