














each of the five S. coelicolor strains to oxidative stress. Hydrogen
peroxide was used as an oxidant in solid R2YE and SFM media.
We first observed the inhibition of growth for each strain follow-
ing exposure to a gradient of concentrations of hydrogen peroxide
in an agar diffusion test. The pup deletion mutants presented a
halo of inhibition larger than those of the other strains on R2YE
medium (Fig. 6A) and on SFM medium (data not shown). We
then evaluated the effects of oxidative stress by plating disrupted
mycelia from the five strains onto R2YE solid medium with and
without hydrogen peroxide. Colonies were counted after 5 days of
growth (Fig. 6B). The pup deletion mutant (with or without the

empty vector) was much more sensitive to hydrogen peroxide
than the other strains. This sensitivity of the pup mutant to hydro-
gen peroxide was complemented by introducing a copy of the
His-pup gene on pSET152. The sensitivity of the proteasome mu-
tant to H2O2 was similar to that of the wild-type strain (Fig. 6B).

DISCUSSION

Our objectives were to determine whether pupylation occurs in
Streptomyces and, if so, to investigate its role in morphological and
physiological differentiation, comparing the results obtained with
those for the proteasome. We chose to perform the study with S.

FIG 4 Scanning electron microscopy of mycelium grown on R2YE medium. Scanning electron micrographs of surface cultures grown on R2YE medium for 5
days are shown for the wild-type strain (M145), the pup mutant (�pup), the pup mutant with the empty vector pSET152 (�pup�pSET152), the pup mutant with
pSET-E*-His-pup (�pup�pSET-E*His-pup), and the proteasome mutant (prcB::pOJ260). The same magnification is used for all images. Bar, 10 �m.
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coelicolor, the model organism used for most studies of develop-
ment in filamentous actinobacteria. In streptomycetes, as in my-
cobacteria, the genes involved in pupylation and those encoding
components of the proteasome are clustered together on the chro-
mosome. In S. coelicolor, these genes were transcribed at various
stages of development on solid medium and at all time points
tested in liquid culture. This finding is consistent with data from
previous proteome studies in S. coelicolor, which have shown that

all the proteins of the proteasome and the pupylation process
are present at various times during growth, including the early
stages (44).

We then demonstrated that the pupylation process was active
in S. coelicolor and that numerous proteins were modified by this
process. We identified 20 pupylation targets in S. coelicolor. Seven
of these target proteins have homologues that are also pupylated
in Mycobacterium, R. erythropolis, or C. glutamicum (26–30).
These homologous proteins were, in some cases, modified at dif-
ferent positions in different actinobacteria (see Fig. S2 in the sup-
plemental material). As a result, the currently available prediction
programs based on the mycobacterial pupylome (53–55) do not
predict pupylation sites in S. coelicolor proteins accurately. Indeed,
the three available prediction programs predicted only 6 to 11 of
the 22 modified lysine residues identified in S. coelicolor pupylated
proteins (see Table S3 in the supplemental material). One of the 20
pupylated proteins identified in this study, AhpC (SCO0465), has
already been shown to accumulate in a S. coelicolor proteasome-
deficient mutant and in arc, dop, and pup insertion mutants (12).
These observations are consistent with the degradation of pupy-
lated proteins by the proteasome.

Investigations of the consequences of pup deletion for mor-
phological differentiation showed that the pup mutant displayed a
major impairment of spore formation on R2YE and SFM media.
On the contrary, for the proteasome mutant, differentiation was
not affected on SFM medium, but spore formation was reduced
on R2YE medium. The pup mutant produced significantly less of
the secondary metabolites ACT and RED than the wild type in
liquid R2YE medium. For the proteasome-deficient mutant, the
production of ACT and RED was not affected (e.g., production of
ACT in liquid R2YE medium) or was only slightly affected (e.g.,
halving of the production of RED in liquid R2YE medium). Mao
and coworkers also observed that a proteasome-deficient mutant
grown on solid R2YE medium produced smaller amounts of pig-
mented secondary metabolites than the wild-type strain (13).

FIG 5 Time courses of actinorhodin (ACT) and prodiginine (RED) produc-
tion in liquid R2YE medium. The production of ACT and RED is shown for the
wild-type strain (M145), the pup mutant (�pup), the pup mutant with the
empty vector pSET152 (�pup � pSET152), the pup mutant with pSET-E*-
His-pup (�pup � pSET-E*His-pup), and the proteasome mutant
(prcB::pOJ260).

FIG 6 Response to oxidative stress. The wild-type strain (M145), the pup mutant (�pup), the pup mutant with the empty vector pSET152 (�pup � pSET152),
the pup mutant with pSET-E*-His-pup (�pup � pSET-E*His-pup), and the proteasome mutant (prcB::pOJ260) were exposed to oxidative stress caused by H2O2

on R2YE medium. (A) Diffusion assay showing the inhibition zone caused by H2O2. (B) CFU counts on medium with or without H2O2.
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Consistent with our results, the preliminary data of Liu and co-
workers (56) led them to conclude that pupylation was involved in
the regulation of antibiotic production in S. coelicolor. Some of the
proteins that we identified as pupylation targets in S. coelicolor
play a role in regulating morphological differentiation or anti-
biotic production. This is the case, for instance, for OsaA (57)
and FtsI (58), but further studies are required to link the phe-
notype of the pupylation-deficient mutant for morphological
and metabolic differentiation with the fate of particular target
proteins.

Previous studies have established a link between oxidative
stress, pupylation, and proteasomes in both Mycobacterium (9, 10,
18, 51, 52) and Streptomyces (12). We therefore compared the
resistance of the pupylation- and proteasome-deficient mutants
to oxidative stress with that of the wild-type strain. We found that
the pup deletion mutant was much more sensitive than the wild
type to hydrogen peroxide on R2YE and SFM media. Under the
same conditions, the sensitivity of the proteasome-deficient mu-
tant to hydrogen peroxide was similar to that of the wild type. In a
previous study (12), De Mot and coworkers studied the sensitivi-
ties of a S. coelicolor proteasome-deficient mutant and arc, dop,
and pup knockout mutants to oxidative agents. They used an agar
diffusion test on TSB medium. Under these conditions, those re-
searchers observed no difference in sensitivity to hydrogen perox-
ide (at concentrations of up to 0.5 M). There are several possible
reasons for the differences between our observations for the pup
mutant and those of the previous study. For example, the medium
used was not the same, and the concentration of hydrogen perox-
ide used in the agar diffusion test was much higher in our case (8.8
M versus 0.5 M). Our results were confirmed by a CFU assay
assessing sensitivity to hydrogen peroxide.

De Mot and coworkers observed greater resistance to cumene
hydroperoxide on TSB medium in an agar diffusion system for a S.
coelicolor proteasome-deficient mutant and for arc, dop, and pup
knockout mutants (12). In M. tuberculosis, the pupylation and
proteasome mutants were found to be more resistant to hydrogen
peroxide than the wild-type strain but more sensitive to other
forms of oxidative stress (9, 10). The different patterns of behavior
observed for the mutants of different bacteria exposed to hydro-
gen peroxide or cumene hydroperoxide suggest that different de-
fense systems are active against specific classes of exogenous per-
oxides, as previously observed (12, 59).

Finally, the phenotype of the S. coelicolor pup deletion mutant
reveals the involvement of pupylation in the regulation of Strep-
tomyces differentiation and resistance to oxidative stress. Our re-
sults are consistent with those of Compton et al., who found that a
S. coelicolor pafA-null strain displayed defects of both sporulation
and secondary metabolism and who also presented evidence link-
ing pupylation and the oxidative stress response in S. coelicolor
(60). The differences in the phenotypes of the pup and proteasome
mutants observed in our study indicate that pupylation may have
other roles in addition to its known proteasome-associated func-
tion. This conclusion is consistent with previous observations (26,
29) that not all pupylated proteins are degraded. Furthermore,
pupylation occurs in corynebacteria, which do not have a protea-
some (30). Thus, in addition to targeting proteins to the protea-
some for turnover, pupylation, like ubiquitination, is probably
also involved in other functions.
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